Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Speed up Clifford.compose #7483

Merged
merged 8 commits into from
Jan 11, 2023
161 changes: 102 additions & 59 deletions qiskit/quantum_info/operators/symplectic/clifford.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
"""
Clifford operator class.
"""
import itertools
import re

import numpy as np
Expand Down Expand Up @@ -104,18 +105,21 @@ class Clifford(BaseOperator, AdjointMixin, Operation):
`arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_
"""

_COMPOSE_PHASE_LOOKUP = None
_COMPOSE_1Q_LOOKUP = None

def __array__(self, dtype=None):
if dtype:
return np.asarray(self.to_matrix(), dtype=dtype)
return self.to_matrix()

def __init__(self, data, validate=True):
def __init__(self, data, validate=True, copy=True):
"""Initialize an operator object."""

# Initialize from another Clifford by sharing the data
# Initialize from another Clifford
if isinstance(data, Clifford):
num_qubits = data.num_qubits
self.tableau = data.tableau
self.tableau = data.tableau.copy() if copy else data.tableau

# Initialize from ScalarOp as N-qubit identity discarding any global phase
elif isinstance(data, ScalarOp):
Expand All @@ -138,7 +142,7 @@ def __init__(self, data, validate=True):
# Initialize StabilizerTable directly from the data
else:
if isinstance(data, (list, np.ndarray)) and np.asarray(data, dtype=bool).ndim == 2:
data = np.asarray(data, dtype=bool)
data = np.array(data, dtype=bool, copy=copy)
if data.shape[0] == data.shape[1]:
self.tableau = self._stack_table_phase(
data, np.zeros(data.shape[0], dtype=bool)
Expand Down Expand Up @@ -191,6 +195,9 @@ def __eq__(self, other):
"""Check if two Clifford tables are equal"""
return super().__eq__(other) and (self.tableau == other.tableau).all()

def copy(self):
return type(self)(self, validate=False, copy=True)

# ---------------------------------------------------------------------
# Attributes
# ---------------------------------------------------------------------
Expand Down Expand Up @@ -424,72 +431,99 @@ def compose(self, other, qargs=None, front=False):
return _append_operation(self.copy(), other, qargs=qargs)

if not isinstance(other, Clifford):
other = Clifford(other)
# Not copying is safe since we're going to drop our only reference to `other` at the end
# of the function.
other = Clifford(other, copy=False)

# Validate compose dimensions
self._op_shape.compose(other._op_shape, qargs, front)

# Pad other with identities if composing on subsystem
other = self._pad_with_identity(other, qargs)

if front:
table1 = self
table2 = other
else:
table1 = other
table2 = self

num_qubits = self.num_qubits

array1 = table1.symplectic_matrix.astype(int)
phase1 = table1.phase.astype(int)

array2 = table2.symplectic_matrix.astype(int)
phase2 = table2.phase.astype(int)

# Update Pauli table
pauli = (array2.dot(array1) % 2).astype(bool)

# Add phases
phase = np.mod(array2.dot(phase1) + phase2, 2)

# Correcting for phase due to Pauli multiplication
ifacts = np.zeros(2 * num_qubits, dtype=int)

for k in range(2 * num_qubits):
left, right = (self, other) if front else (other, self)

row2 = array2[k]
x2 = table2.x[k]
z2 = table2.z[k]

# Adding a factor of i for each Y in the image of an operator under the
# first operation, since Y=iXZ

ifacts[k] += np.sum(x2 & z2)

# Adding factors of i due to qubit-wise Pauli multiplication

for j in range(num_qubits):
x = 0
z = 0
for i in range(2 * num_qubits):
if row2[i]:
x1 = array1[i, j]
z1 = array1[i, j + num_qubits]
if (x | z) & (x1 | z1):
val = np.mod(np.abs(3 * z1 - x1) - np.abs(3 * z - x) - 1, 3)
if val == 0:
ifacts[k] += 1
elif val == 1:
ifacts[k] -= 1
x = np.mod(x + x1, 2)
z = np.mod(z + z1, 2)
if self.num_qubits == 1:
return self._compose_1q(left, right)
return self._compose_general(left, right)

@classmethod
def _compose_general(cls, first, second):
# Correcting for phase due to Pauli multiplication. Start with factors of -i from XZ = -iY
# on individual qubits, and then handle multiplication between each qubitwise pair.
ifacts = np.sum(second.x & second.z, axis=1, dtype=int)

# A lookup table for calculating phases. The indices are
jakelishman marked this conversation as resolved.
Show resolved Hide resolved
# current_x, current_z, running_x_count, running_z_count
# where all counts taken modulo 2.
lookup = np.zeros((2, 2, 2, 2), dtype=int)
lookup[0, 1, 1, 0] = lookup[1, 0, 1, 1] = lookup[1, 1, 0, 1] = -1
lookup[0, 1, 1, 1] = lookup[1, 0, 0, 1] = lookup[1, 1, 1, 0] = 1

x1, z1 = first.x.astype(np.uint8), first.z.astype(np.uint8)
lookup = cls._compose_lookup()

# The loop is over 2*n_qubits entries, and the entire loop is cubic in the number of qubits.
for k, row2 in enumerate(second.symplectic_matrix):
x1_select = x1[row2]
z1_select = z1[row2]
x1_accum = np.logical_xor.accumulate(x1_select, axis=0).astype(np.uint8)
z1_accum = np.logical_xor.accumulate(z1_select, axis=0).astype(np.uint8)
indexer = (x1_select[1:], z1_select[1:], x1_accum[:-1], z1_accum[:-1])
ifacts[k] += np.sum(lookup[indexer])
p = np.mod(ifacts, 4) // 2

phase = np.mod(phase + p, 2)
phase = (
ihincks marked this conversation as resolved.
Show resolved Hide resolved
(np.matmul(second.symplectic_matrix, first.phase, dtype=int) + second.phase + p) % 2
).astype(bool)
data = cls._stack_table_phase(
(np.matmul(second.symplectic_matrix, first.symplectic_matrix, dtype=int) % 2).astype(
ihincks marked this conversation as resolved.
Show resolved Hide resolved
bool
),
phase,
)
return Clifford(data, validate=False, copy=False)

return Clifford(self._stack_table_phase(pauli, phase), validate=False)
@classmethod
def _compose_1q(cls, first, second):
# 1-qubit composition can be done with a simple lookup table; there are 24 elements in the
# 1q Clifford group, so 576 possible combinations, which is small enough to look up.
if cls._COMPOSE_1Q_LOOKUP is None:
# The valid tables for 1q Cliffords.
tables_1q = np.array(
[
[[False, True], [True, False]],
[[False, True], [True, True]],
[[True, False], [False, True]],
[[True, False], [True, True]],
[[True, True], [False, True]],
[[True, True], [True, False]],
]
)
phases_1q = np.array([[False, False], [False, True], [True, False], [True, True]])
# Build the lookup table.
cliffords = [
cls(cls._stack_table_phase(table, phase), validate=False, copy=False)
for table, phase in itertools.product(tables_1q, phases_1q)
]
cls._COMPOSE_1Q_LOOKUP = {
(cls._hash(left), cls._hash(right)): cls._compose_general(left, right)
for left, right in itertools.product(cliffords, repeat=2)
}
return cls._COMPOSE_1Q_LOOKUP[cls._hash(first), cls._hash(second)].copy()

@classmethod
def _compose_lookup(cls):
if cls._COMPOSE_PHASE_LOOKUP is None:
# A lookup table for calculating phases. The indices are
# current_x, current_z, running_x_count, running_z_count
# where all counts taken modulo 2.
lookup = np.zeros((2, 2, 2, 2), dtype=int)
lookup[0, 1, 1, 0] = lookup[1, 0, 1, 1] = lookup[1, 1, 0, 1] = -1
lookup[0, 1, 1, 1] = lookup[1, 0, 0, 1] = lookup[1, 1, 1, 0] = 1
lookup.setflags(write=False)
cls._COMPOSE_PHASE_LOOKUP = lookup
return cls._COMPOSE_PHASE_LOOKUP

# ---------------------------------------------------------------------
# Representation conversions
Expand Down Expand Up @@ -719,6 +753,15 @@ def to_labels(self, array=False, mode="B"):
# Internal helper functions
# ---------------------------------------------------------------------

def _hash(self):
"""Produce a hashable value that is unique for each different Clifford. This should only be
used internally when the classes being hashed are under our control, because classes of this
type are mutable."""
table = self.table
abits = np.packbits(table.array)
pbits = np.packbits(table.phase)
return (abits.tobytes(), pbits.tobytes())
jakelishman marked this conversation as resolved.
Show resolved Hide resolved

@staticmethod
def _is_symplectic(mat):
"""Return True if input is symplectic matrix."""
Expand Down Expand Up @@ -768,7 +811,7 @@ def _pad_with_identity(self, clifford, qargs):
if qargs is None:
return clifford

padded = Clifford(np.eye(2 * self.num_qubits, dtype=bool), validate=False)
padded = Clifford(np.eye(2 * self.num_qubits, dtype=bool), validate=False, copy=False)
inds = list(qargs) + [self.num_qubits + i for i in qargs]

# Pad Pauli array
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
---
features:
- |
:class:`.Clifford` now takes an optional ``copy`` keyword argument in its
constructor. If set to ``False``, then a :class:`.StabilizerTable` provided
as input will not be copied, but will be used directly. This can have
performance benefits, if the data in the table will never be mutated by any
other means.
- |
The performance of :meth:`.Clifford.compose` has been greatly improved for
all numbers of qubits. For operators of 20 qubits, the speedup is on the
order of 100 times.