Skip to content

upgrade omeinsum #51

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 11, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 3 additions & 5 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "GenericTensorNetworks"
uuid = "3521c873-ad32-4bb4-b63d-f4f178f42b49"
authors = ["GiggleLiu <cacate0129@gmail.com> and contributors"]
version = "1.2.0"
version = "1.2.1"

[deps]
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
Expand All @@ -14,7 +14,6 @@ LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LuxorGraphPlot = "1f49bdf2-22a7-4bc4-978b-948dc219fbbc"
Mods = "7475f97c-0381-53b1-977b-4c60186c8d62"
OMEinsum = "ebe7aa44-baf0-506c-a96f-8464559b3922"
OMEinsumContractionOrders = "6f22d1fd-8eed-4bb7-9776-e7d684900715"
Polynomials = "f27b6e38-b328-58d1-80ce-0feddd5e7a45"
Primes = "27ebfcd6-29c5-5fa9-bf4b-fb8fc14df3ae"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Expand All @@ -26,14 +25,13 @@ StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
TropicalNumbers = "b3a74e9c-7526-4576-a4eb-79c0d4c32334"

[compat]
AbstractTrees = "0.3, 0.4"
AbstractTrees = "0.4"
CUDA = "3"
FFTW = "1.4"
Graphs = "1.7"
LuxorGraphPlot = "0.1"
Mods = "1.3"
OMEinsum = "0.6.1"
OMEinsumContractionOrders = "0.6"
OMEinsum = "0.7"
Polynomials = "2.0, 3"
Primes = "0.5"
Requires = "1"
Expand Down
2 changes: 1 addition & 1 deletion docs/make.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
using Pkg
using GenericTensorNetworks
using GenericTensorNetworks: TropicalNumbers, Polynomials, Mods, OMEinsum, OMEinsumContractionOrders, LuxorGraphPlot
using GenericTensorNetworks: TropicalNumbers, Polynomials, Mods, OMEinsum, OMEinsum.OMEinsumContractionOrders, LuxorGraphPlot
using Documenter
using DocThemeIndigo
using PlutoStaticHTML
Expand Down
2 changes: 1 addition & 1 deletion docs/src/gist.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ They can be installed in a similar way to `GenericTensorNetworks`.
After installing the required packages, one can open a Julia REPL, and copy-paste the following code snippet into it.

```julia
using OMEinsum, OMEinsumContractionOrders
using OMEinsum
using Graphs
using Random

Expand Down
1 change: 0 additions & 1 deletion src/GenericTensorNetworks.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
module GenericTensorNetworks

using OMEinsumContractionOrders
using Core: Argument
using TropicalNumbers
using OMEinsum
Expand Down
27 changes: 14 additions & 13 deletions src/bounding.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,11 +64,11 @@ function cached_einsum(se::SlicedEinsum, @nospecialize(xs), size_dict)
end
function cached_einsum(code::NestedEinsum, @nospecialize(xs), size_dict)
if OMEinsum.isleaf(code)
y = xs[code.tensorindex]
y = xs[OMEinsum.tensorindex(code)]
return CacheTree(y, CacheTree{eltype(y)}[])
else
caches = [cached_einsum(arg, xs, size_dict) for arg in code.args]
y = einsum(code.eins, ntuple(i->caches[i].content, length(caches)), size_dict)
caches = [cached_einsum(arg, xs, size_dict) for arg in OMEinsum.siblings(code)]
y = einsum(OMEinsum.rootcode(code), ntuple(i->caches[i].content, length(caches)), size_dict)
return CacheTree(y, caches)
end
end
Expand All @@ -84,8 +84,9 @@ function generate_masktree(mode, code::NestedEinsum, cache, mask, size_dict)
if OMEinsum.isleaf(code)
return CacheTree(mask, CacheTree{Bool}[])
else
submasks = backward_tropical(mode, getixs(code.eins), (getfield.(cache.siblings, :content)...,), OMEinsum.getiy(code.eins), cache.content, mask, size_dict)
return CacheTree(mask, generate_masktree.(Ref(mode), code.args, cache.siblings, submasks, Ref(size_dict)))
eins = OMEinsum.rootcode(code)
submasks = backward_tropical(mode, getixs(eins), (getfield.(cache.siblings, :content)...,), OMEinsum.getiy(eins), cache.content, mask, size_dict)
return CacheTree(mask, generate_masktree.(Ref(mode), OMEinsum.siblings(code), cache.siblings, submasks, Ref(size_dict)))
end
end

Expand All @@ -98,12 +99,12 @@ function masked_einsum(se::SlicedEinsum, @nospecialize(xs), masks, size_dict)
end
function masked_einsum(code::NestedEinsum, @nospecialize(xs), masks, size_dict)
if OMEinsum.isleaf(code)
y = copy(xs[code.tensorindex])
y = copy(xs[OMEinsum.tensorindex(code)])
y[OMEinsum.asarray(.!masks.content)] .= Ref(zero(eltype(y)))
return y
else
xs = [masked_einsum(arg, xs, mask, size_dict) for (arg, mask) in zip(code.args, masks.siblings)]
y = einsum(code.eins, (xs...,), size_dict)
xs = [masked_einsum(arg, xs, mask, size_dict) for (arg, mask) in zip(OMEinsum.siblings(code), masks.siblings)]
y = einsum(OMEinsum.rootcode(code), (xs...,), size_dict)
y[OMEinsum.asarray(.!masks.content)] .= Ref(zero(eltype(y)))
return y
end
Expand All @@ -121,10 +122,10 @@ Contraction method with bounding.
"""
function bounding_contract(mode::AllConfigs, code::EinCode, @nospecialize(xsa), ymask, @nospecialize(xsb); size_info=nothing)
LT = OMEinsum.labeltype(code)
bounding_contract(mode, NestedEinsum(NestedEinsum{DynamicEinCode{LT}}.(1:length(xsa)), code), xsa, ymask, xsb; size_info=size_info)
bounding_contract(mode, DynamicNestedEinsum(DynamicNestedEinsum{LT}.(1:length(xsa)), code), xsa, ymask, xsb; size_info=size_info)
end
function bounding_contract(mode::AllConfigs, code::Union{NestedEinsum,SlicedEinsum}, @nospecialize(xsa), ymask, @nospecialize(xsb); size_info=nothing)
size_dict = size_info===nothing ? Dict{OMEinsum.labeltype(code.eins),Int}() : copy(size_info)
size_dict = size_info===nothing ? Dict{OMEinsum.labeltype(code),Int}() : copy(size_info)
OMEinsum.get_size_dict!(code, xsa, size_dict)
# compute intermediate tensors
@debug "caching einsum..."
Expand All @@ -139,11 +140,11 @@ end
# get the optimal solution with automatic differentiation.
function solution_ad(code::EinCode, @nospecialize(xsa), ymask; size_info=nothing)
LT = OMEinsum.labeltype(code)
solution_ad(NestedEinsum(NestedEinsum{DynamicEinCode{LT}}.(1:length(xsa)), code), xsa, ymask; size_info=size_info)
solution_ad(DynamicNestedEinsum(DynamicNestedEinsum{LT}.(1:length(xsa)), code), xsa, ymask; size_info=size_info)
end

function solution_ad(code::Union{NestedEinsum,SlicedEinsum}, @nospecialize(xsa), ymask; size_info=nothing)
size_dict = size_info===nothing ? Dict{OMEinsum.labeltype(code.eins),Int}() : copy(size_info)
size_dict = size_info===nothing ? Dict{OMEinsum.labeltype(code),Int}() : copy(size_info)
OMEinsum.get_size_dict!(code, xsa, size_dict)
# compute intermediate tensors
@debug "caching einsum..."
Expand All @@ -165,7 +166,7 @@ function read_config!(code::SlicedEinsum, mt, out)
end

function read_config!(code::NestedEinsum, mt, out)
for (arg, ix, sibling) in zip(code.args, getixs(code.eins), mt.siblings)
for (arg, ix, sibling) in zip(OMEinsum.siblings(code), getixs(OMEinsum.rootcode(code)), mt.siblings)
if OMEinsum.isleaf(arg)
mask = convert(Array, sibling.content) # note: the content can be CuArray
for ci in CartesianIndices(mask)
Expand Down
2 changes: 1 addition & 1 deletion test/arithematics.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
using GenericTensorNetworks, Test, OMEinsum, OMEinsumContractionOrders
using GenericTensorNetworks, Test, OMEinsum
using Mods, Polynomials, TropicalNumbers
using Graphs, Random
using GenericTensorNetworks: StaticBitVector
Expand Down
1 change: 0 additions & 1 deletion test/configurations.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
using GenericTensorNetworks, Test, Graphs
using OMEinsum
using TropicalNumbers: CountingTropicalF64
using OMEinsumContractionOrders: uniformsize
using GenericTensorNetworks: _onehotv, _x, sampler_type, set_type, best_solutions, best2_solutions, solutions, all_solutions, bestk_solutions, AllConfigs, SingleConfig, max_size, max_size_count

@testset "Config types" begin
Expand Down
2 changes: 1 addition & 1 deletion test/graph_polynomials.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
using GenericTensorNetworks, Test, OMEinsum, OMEinsumContractionOrders
using GenericTensorNetworks, Test, OMEinsum
using Mods, Polynomials, TropicalNumbers
using Graphs, Random
using GenericTensorNetworks: StaticBitVector, graph_polynomial
Expand Down
2 changes: 1 addition & 1 deletion test/networks/MaximalIS.jl
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ end
@test min2.coeffs == (2, 150, 7510)

for bounded in [false, true]
println("bounded = ", bounded, ", configs max1")
@info("bounded = ", bounded, ", configs max1")
@test length(solve(MaximalIS(g), ConfigsMin(; bounded=bounded))[].c) == 2
println("bounded = ", bounded, ", configs max3")
cmin2 = solve(MaximalIS(g), ConfigsMin(3; bounded=bounded))[]
Expand Down