Skip to content

Fix transpose typos in additive functional lecture #120

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 7, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions source/rst/additive_functionals.rst
Original file line number Diff line number Diff line change
Expand Up @@ -159,15 +159,15 @@ Next we construct a linear system
\begin{bmatrix}
1 & 0 & 0 \\
0 & A & 0 \\
\nu & D' & 1
\nu & D & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
x_t \\
y_t
\end{bmatrix} +
\begin{bmatrix}
0 \\ B \\ F'
0 \\ B \\ F
\end{bmatrix}
z_{t+1}

Expand Down Expand Up @@ -763,9 +763,9 @@ functionals defined by :eq:`old1_additive_functionals` and :eq:`old2_additive_fu
.. math::

\begin{aligned}
H & := F + B'(I - A')^{-1} D
H & := F + D (I - A)^{-1} B
\\
g & := D' (I - A)^{-1}
g & := D (I - A)^{-1}
\end{aligned}


Expand Down Expand Up @@ -814,7 +814,7 @@ definitions just given,
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & A & 0 & 0 \\
\nu & 0 & D' & 1 & 0 \\
\nu & 0 & D & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
Expand All @@ -828,8 +828,8 @@ definitions just given,
0 \\
0 \\
B \\
F' \\
H'
F \\
H
\end{bmatrix}
z_{t+1}

Expand Down Expand Up @@ -934,7 +934,7 @@ Corresponding to the additive decomposition described above we have a multiplica
.. math::

\frac{M_t}{M_0}
= \exp (t \nu) \exp \Bigl(\sum_{j=1}^t H \cdot Z_j \Bigr) \exp \biggl( D'(I-A)^{-1} x_0 - D'(I-A)^{-1} x_t \biggr)
= \exp (t \nu) \exp \Bigl(\sum_{j=1}^t H \cdot Z_j \Bigr) \exp \biggl( D(I-A)^{-1} x_0 - D(I-A)^{-1} x_t \biggr)


or
Expand All @@ -957,7 +957,7 @@ and

.. math::

\tilde e(x) = \exp[g(x)] = \exp \bigl[ D' (I - A)^{-1} x \bigr]
\tilde e(x) = \exp[g(x)] = \exp \bigl[ D (I - A)^{-1} x \bigr]


An instance of class ``AMF_LSS_VAR`` (:ref:`above <amf_lss>`) includes this associated multiplicative functional as an attribute.
Expand Down Expand Up @@ -1041,7 +1041,7 @@ As we have seen, it has representation
\widetilde M_t = \exp \biggl( \sum_{j=1}^t \biggl(H \cdot z_j -\frac{ H \cdot H }{2} \biggr) \biggr), \quad \widetilde M_0 =1


where :math:`H = [F + B'(I-A')^{-1} D]`.
where :math:`H = [F + D(I-A)^{-1} B]`.

It follows that :math:`\log {\widetilde M}_t \sim {\mathcal N} ( -\frac{t H \cdot H}{2}, t H \cdot H )` and that consequently :math:`{\widetilde M}_t` is log normal.

Expand Down