v0.42 BETA
A lightweight MATLAB deeplearning toolbox,based on gpuArray.
One of the fastest matlab's RNN libs.
model:A LSTM model has [1024,1024,1024] hidensizes and 10
timestep with a 256 dims input.
Device: i7-4710hq,GTX940m
matDL: 60sec/epoch Keras(1.2.2,Tensorflow backend,cudnn5.1): 29sec/epoch
High parallel Implementation.
- Concatance the weights of 4 gates to W and the values of x and h of every timesteps in a batch to a 3D tensor xh.Compute x*W for every timesteps of every samples in a batch at one time.
- Compute the activated values of input,forget ,ouput gates at one time.
OOP style
- Use
struct
type to define a layer class and a model class.Define ff, bp, optimize methods by using aFunctionHandle
.
- A
model
is a set oflayers
,data
andoptimizer
. - build
model=model_init(input_shape,configs ,flag,optimizer)
- arguments:
input_shape
: avector
,[input_dim,batchsize]
or[input_dim,timestep,batchsize]
configs
:cell
,configures of each layersflag
:bool
,0 is predict model,1 is trrain modeloptimizer
:struct
,keywords:opt
(type of optimizer) ,learningrate
- attributes :
model.input_shape
model.output_shape
model.batchsize
model.configs
model.flag
model.layers
model.optimizer
(ifflag
)model.loss
- methods:
- private:
model.eval_loss=@(outputlayer,y_true,flag)eval_loss(outputlayer,y_true,flag)
model.optimize=@(layer,optimizer,batch,epoch)layer_optimize(layer,optimizer,batch,epoch)
- public:
model.train=@(model,x,y,nb_epoch,verbose,filename)model_train(model,x,y,nb_epoch,verbose,filename)
model=model.train(model,x,y,nb_epoch,verbose,filename)
- arguments:
model
: selfx
:input,shape:[dim,timestep,nb_samples],or [dim,nb_samples]y
:targetsnb_epoch
: how many epochs you want to trainverbose
:0,1,2,3,0 means no waitbar an figure,1 means showing waitbar only,2 means showing waitbar and plotting figures every epoch,3 means showing waitbar and plotting figures every epoch an batch.
- arguments:
model.predict=@(model,x)model_predict(model,x)
y=model.predict(model,x)
model.evaluate=@(model,x,y_true)model_evaluate(model,x,y_true)
mean_loss=model.evaluate(model,x,y_true)
model.save=@(filename)model_save(model,filename)
model.save(filename)
- Save layers weigths and configs to a
.mat
file.
- private:
- reload:
model=model_load(minimodel,batch_size,flag,optimizer)
minimodel
is the minimodel saved bymodel.save()
,can be astruct
variable or astring
of filename.
- example:
x=rand(100,10,3200,'single','gpuArray');
y=(zeros(512,10,3200'single','gpuArray'));
y(1,:,:)=1;
%% Define a model which has 2 lstm layers with 512 hiddenunits,and a timedistrbuted dense layer with 512 hiddenunits
input_shape=[100,10,64];%input dim is 100,timestep is 10,batchsize is 64
hiddensizes=[512,512,512];
for l=1:length(hiddensize)
configs{l}.type='lstm';
configs{l}.hiddensize=hiddensize(l);
configs{l}.return_sequence=1;
end
configs{l+1}.type='activation';
configs{l+1}.act_fun='softmax';
configs{l+1}.loss='categorical_cross_entropy';
optimizer.learningrate=0.1;
optimizer.momentum=0.2;
optimizer.opt='sgd'; model=model_init(input_shape,configs,1,optimizer);
%% Train the model
model=model.train(model,x,y,nb_epoch,3,'example/minimodel_f.mat');
or
test_lstm(50,[512,512,512],256,10,64,5);
- attributes:
type
:string
,type of the layer,available types:input
,dense
,lstm
,activation
prelayer_type
:string
,type of the previous layer,available types:input
,dense
,lstm
,activation
trainable
:bool
,is the layer trainableflag
: train model or predict modelconfigs
:configures of the layerinput_shape
:vector
,[input_dim,batchsize]
or[input_dim,timestep,batchsize]
output_shape
:vector
,[hiddensize,batchsize]
or[hiddensize,timestep,batchsize]
batch
:int
,how many batches have been passedepoch
: same tobatch
- methods:
layer=**layer_init(prelayer,loss,kwgrs)
- Built and init a layer.If the layer is a
input
layer,prelayer
argument should beinput_shape
- Built and init a layer.If the layer is a
layer=layer.ff(layer,prelayer)
layer=layer.bp(layer,nextlayer)
* `layer=lstm_init_gpu(prelayer,hiddensize,return_sequence,flag,loss)` * A LSTM(**Long-Short Term Memory unit - Hochreiter 1997**) layer,see [there]:http://deeplearning.net/tutorial/lstm.html for a step-by-step description of the algorithm. * aviliable configures: * `config.hiddensize` : `int`(`double`),number of hidden units(output dim) * `config.return_sequence` :`bool`(`double`),return sequences or not.if `return_sequences`,output will be a 3D tensor with shape (hiddensize,timestep,batchsize). Else ,a 2D tensor with shape (hiddensize,batchsize). * `config.loss` : `string`,type of loss function.Optional,only be used if the layer is an ouput layer. * **example**