Skip to content

APAlyzer-QSr is a bioinformatics pipeline performing APA analysis using Quant-Seq REV data. In general it uses PolyA DB3 to clean the PASs indetified from the sequencing data.

License

Notifications You must be signed in to change notification settings

RJWANGbioinfo/APAlyzer-QSr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

APAlyzer-QSr: APA analysis toolkit for Quant-Seq REV

Overview

APAlyzer-QSr is a automatic toolkit performing APA analysis using Quant-Seq REV data. In general it uses PolyA DB3 to clean the PASs indetified from the sequencing data.

Authors

  • Ruijia Wang
  • Bin Tian

License

If you plan to use the APAlyzer-QSr for-profit, you will need to purchase a license. Please contact rjwang.bioinfo@gmail.com for more information.

Languages

Python 3 and R

Supported Genome

Genomes that covered by PolyA DB3 including mm9, hg19 and rn5.

Requirements

Python Modules

numpy pandas pylab scipy HTSeq matplotlib

All these can be install through

pip install packagename

R library

GenomicRanges Biostrings dplyr GenomicAlignments

All these can be install through

install.packages(packagename)

or

BiocManager::install(packagename)

Optional Requirements

Although the PASs indetification and clean are using bam files as input, this toolkit also provide scripts to handel the raw fastq files from Quan-Seq REV. The following packages are used for QC, trimming and mapping:

FastQC for quality control

https://www.bioinformatics.babraham.ac.uk/projects/fastqc

BBmap for trimming

https://sourceforge.net/projects/bbmap/

STAR as RNAseq mapper

https://github.com/alexdobin/STAR

Sambamba for bam converting

https://lomereiter.github.io/sambamba

Reference file

All the reference files used for fastq trimming and PAS clean are stored in REF/ folder

Quick-Start

The toolkit contains a shell scripts can simply run all steps in one shot aftering setting the path. You can first put all the fastq files under rootdir/project/rawfastq/, then run:

./raw.pip.example.sh

Path-setting-example

And a expample of path setting in the shell:

1)Define the number of threads will be used
THREADS=24
2)Define the path of the 'scripts' folder in APAlyzer_qrev
scrdir=/xxx/APAlyzer_qrev/scripts/
3)Define project name
project=project1	
4)Define path of the rootdir, usually your project-dir will be rootdir/project/
rootdir=/xxx/my_rootdir/
5)Define the genmoe version; mm9, hg19, or rn5
geno=mm9		
6)Define path of the gemome folder used for STAR mapping
genodir=/xxx/genome/mm9_star/
7)Define path of the REF folder containing reference files
refdir=/xxx/REF/		
8)Define the analysis design; 'YES' or 'NO'; setting whether the analysis design is single sample or multiple replicates
Reps='YES' 											
samplefile=/xxx/Samples/sample_list.txt	  # Only need when Reps='YES'	
9)Define the treat groups
treats="COM1_NT COM2_NT"
10)Define the control groups
controls="COM1_TRT COM2_TRT"

Using the setting above, we can analysis a mouse mm9 dataset, and compare the APA in "COM1_TRT" vs "COM1_NT", and "COM2_TRT" vs "COM2_NT".

Sample file

Sample file are only need when Reps='YES'. This file is a two-column table contain the information of the sample and group. For instance, in the above case, the sample file should looks like:

Sample Group
NT1_rep1 COM1_NT
NT1_rep2 COM1_NT
TRT1_rep1 COM1_TRT
TRT1_rep2 COM1_TRT
NT2_rep1 COM2_NT
NT2_rep2 COM2_NT
TRT2_rep1 COM2_TRT
TRT2_rep2 COM2_TRT

Output

1. The output of the toolkits convering different files in different folders:

File Folder Note
QC file rootdir/project/qccheck/ fastq QC results
*.clipped.fastq rootdir/project/fastq/ trimmed fq file
*.sorted.bam rootdir/project/rawsam/ mapping bam file
mapping.summary.txt rootdir/project/tbl/ mapping summary
*.pA2gene_usage.DRPM.fix.tbl rootdir/project/tbl/ PAS expression profile
3mostAPA.*.DRPM.fix.tbl rootdir/project/tbl/3UTR/ 3'UTR APA results
UPS.*.cut2.tbl rootdir/project/tbl/UPS/ Upstream APA results
*.png rootdir/project/plot/ Scatter plots of 3'UTR and UPS APA
PAS.nuc_freq.diff_vs_NC.xlsx rootdir/project/tbl/ nucleotide frequency (+/- 150 nt from PAS) of the sites that are changing vs same number of sites that do not change
*.motif_enrichment.diff_vs_NC.xlsx rootdir/project/plot/ motif enrichment (4-mers and 6-mers) within +/- 150 nts of the PAS of the sites that are changing vs sites that do not change

2. Columns of *.pA2gene_usage.DRPM.fix.tbl:

Column Description
pAid ID of each PAS, shown as chromosome:Position:Strand
chromosome chromosome ID of PAS
pA_pos genomic position of PAS
strand strand information of PAS
GENEID Entrez Gene ID
gene_symbol gene symbol
gene_desc gene name description
gene_Biotype type of the gene, protein-coding or various types of ncRNAs
LOCATION Specific PAS annotation for ncRNAs, including 5'exon, 3'exon, singel(S) exon, other exon and intron
region PAS location in annotated genes, including 5'UTR, CDS, intron, 3'UTR and various types of ncRNAs.
pAtype_1 PAS location in annotated genes, including 5'UTR, CDS, intron, 3'UTR and various types of ncRNAs. For PASs in 3'UTRs, they are further divided into First (F), Middle (M), and Last (L). If there is only one PAS in 3'UTR, it is called S.
ext Whether PAS is located on an extended 3' end region beyond RefSeq/Ensembl annotations, the extrension region is annotated by polyA_DB3, Yes/No
num_* reads count columns of each sample
DRPM_* normalized expression columns count columns of each sample

3. Columns of 3mostAPA.*.DRPM.fix.tbl:

Column Description
gene_symbol gene symbol
chromosome chromosome ID of PAS
strand strand information of PAS
pA_pos_pA1 genomic position of proximal PAS
pA_pos_pA2 genomic position of distal PAS
pvalue p-value of alternative polyadenylation
num_* reads count columns of each sample
DRPM_* normalized expression columns count columns of each sample
RE_* Relative expression of each gene in each sample, RE=distal/proximal
Log2Ratio_pA1 log2FC of proximal PAS between two groups
Log2Ratio_pA2 log2FC of distal PAS between two groups
Delta_RA Delta Relative abundance
RED Delta Relative expression, RED=Log2Ratio_pA2 - Log2Ratio_pA1
pA1.pAutype alternative polyadenylation pattern, 'UP' for shortening, 'DN' for lengthening, 'NC' for no change

4. PAS Region definitions in 'PAS.nuc_freq.diff_vs_NC.xlsx' and '*.motif_enrichment.diff_vs_NC.xlsx':

Region Range PAS
prx_region_1 -150 ~ -51 proximal PAS
prx_region_2 -50 ~ -1 proximal PAS
prx_region_3 +1 ~ +50 proximal PAS
prx_region_4 +51 ~ +150 proximal PAS
dis_region_1 -150 ~ -51 distal PAS
dis_region_2 -50 ~ -1 distal PAS
dis_region_3 +1 ~ +50 distal PAS
dis_region_4 +51 ~ +150 distal PAS

Run-the-Toolkit-Step-by-Step

1. QC check, trimming and mapping Quan-Seq REV

python scripts/step1_2_3.QC_and_mapping.qcREV.py \
				--rootdir ROOTPATH  \
				--project PRJNAME  \
				--genodir GENOMEPATH  \
				--refdir REFPATH  \
				--threads NUM

2. Summary mapping results

python scripts/step4.STAR_log_summarizer.qcREV.py --rootdir ROOTPATH --project PRJNAME

3. Identify the 3' End Alignment Position

python scripts/step5.LAP.hunter.qcREV.py --rootdir ROOTPATH --project PRJNAME

4. Clean PASs using PolyA DB3

Rscript scripts/step6_1.LAP2PAS.R $rootdir $project $refdir $geno

5. Annotation of cleaned PAS

Rscript scripts/step6_2.Quant_R.pas2gene.builder.R $rootdir $project $refdir $geno

6. Analysis of 3'UTR APA and upstream APA (no replicate design)

python scripts/step7_1.qcREV.3UTR.APA.tbler.norep.py --project $project --rootdir $rootdir --genome $geno --control $controls --treatment $treats
python scripts/step7_2.qcREV.UR.APA.tbler.norep.py --project $project --rootdir $rootdir --genome $geno --control $controls --treatment $treats

6. Analysis of 3'UTR APA and upstream APA (replicate design)

Rscript scripts/step7_1.qcREV.3UTR.APA.tbler.reps.R $rootdir $project $samplefile $geno "$treats" "$controls"
Rscript scripts/step7_2.qcREV.UR.APA.tbler.reps.R $rootdir $project $samplefile $geno "$treats" "$controls"

7. Plot 3'UTR APA and UPS APA pattern using scatter plots

python scripts/step8_1.qcREV.3UTR.scatter.plotter.py --project $project --rootdir $rootdir --control $controls --treatment $treats
python scripts/step8_2.qcREV.UPS.scatter.plotter.py --project $project --rootdir $rootdir --control $controls --treatment $treats

8. calculate nucleotide frequency of PAS regions

Rscript $scrdir/step9.ACGT_FREQ.R $rootdir/$project/tbl/ $geno

9. motif enrichment of PAS regions

Rscript $scrdir/step10.motif_enrichment.R $rootdir/$project/tbl/ $geno

About

APAlyzer-QSr is a bioinformatics pipeline performing APA analysis using Quant-Seq REV data. In general it uses PolyA DB3 to clean the PASs indetified from the sequencing data.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published