Skip to content

Commit

Permalink
Added 16-bit version of ADD/SUB operators. Broadcasting is included.
Browse files Browse the repository at this point in the history
  • Loading branch information
wwwind committed Jan 17, 2020
1 parent a0c6417 commit b94cb47
Show file tree
Hide file tree
Showing 5 changed files with 147 additions and 44 deletions.
31 changes: 27 additions & 4 deletions tensorflow/lite/kernels/add.cc
Original file line number Diff line number Diff line change
Expand Up @@ -93,12 +93,24 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
output_size = TfLiteIntArrayCopy(input1->dims);
}

if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
// 8bit -> 8bit general quantized path, with general rescalings
// as well as, 16bit -> 16bit with general rescalings
bool general_16bit = input1->type == kTfLiteInt16 &&
input2->type == kTfLiteInt16 &&
output->type == kTfLiteInt16;

if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
general_16bit) {
// 8bit -> 8bit general quantized path, with general rescalings
// as well as, 16bit -> 16bit with general rescalings
data->input1_offset = -input1->params.zero_point;
data->input2_offset = -input2->params.zero_point;
data->output_offset = output->params.zero_point;
data->left_shift = 20;

// The shift is set to 15 for 16-bit and 20 in case of 8-bit, accordingly.
// In case of 16-bit we have 65535 << 15 which is less than 1 << 31,
// therefore the addition will still fit in a 32 bit accumulator.
data->left_shift = general_16bit ? 15 : 20;
const double twice_max_input_scale =
2 * std::max(input1->params.scale, input2->params.scale);
const double real_input1_multiplier =
Expand Down Expand Up @@ -221,7 +233,12 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
const TfLiteTensor* input1,
const TfLiteTensor* input2,
TfLiteTensor* output) {
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
bool general_16bit = input1->type == kTfLiteInt16 &&
input2->type == kTfLiteInt16 &&
output->type == kTfLiteInt16;

if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
general_16bit) {
tflite::ArithmeticParams op_params;
op_params.left_shift = data->left_shift;
op_params.input1_offset = data->input1_offset;
Expand Down Expand Up @@ -256,6 +273,12 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
TF_LITE_ADD(optimized_integer_ops, Add, int8_t);
}
}
} else if (output->type == kTfLiteInt16) {
if (need_broadcast) {
TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, int16_t);
} else {
TF_LITE_ADD(reference_ops, Add, int16_t);
}
} else {
if (kernel_type == kReference) {
if (need_broadcast) {
Expand Down Expand Up @@ -286,7 +309,7 @@ TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
// The quantized version of Add doesn't support activations, so we
// always use BroadcastAdd.
if (kernel_type == kReference) {
TF_LITE_ADD(reference_ops, Add);
TF_LITE_ADD(reference_ops, AddLSTM);
} else {
TF_LITE_ADD(optimized_ops, Add);
}
Expand Down
31 changes: 23 additions & 8 deletions tensorflow/lite/kernels/add_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -306,15 +306,18 @@ TEST(QuantizedAddOpModel, QuantizedTestsNoActivationInt16) {
const float kMin = -1.f;
const float kMax = 32767.f / 32768.f;
float kQuantizedTolerance = GetToleranceInt16(kMin, kMax);
std::vector<std::vector<float>> inputs1 = {
{0.1, 0.2, 0.3, 0.4}, {-0.8, 0.2, 0.4, 0.7}, {-0.8, 0.2, 0.7, 0.3}};
std::vector<std::vector<float>> inputs2 = {
{0.6, 0.4, 0.3, 0.1}, {0.6, 0.4, 0.5, -0.8}, {0.6, 0.4, -0.8, 0.5}};
std::vector<std::vector<float>> results = {
{0.7, 0.6, 0.6, 0.5}, {-0.2, 0.6, 0.9, -0.1}, {-0.2, 0.6, -0.1, 0.8}};
std::vector<std::vector<float>> inputs1 = {{0.1, 0.2, 0.3, 0.4, 0.9, 0.7},
{-0.8, 0.2, 0.4, 0.7, 0.1, 0.0},
{-0.8, 0.2, 0.7, 0.3, 0.9, 0.1}};
std::vector<std::vector<float>> inputs2 = {{0.6, 0.4, 0.3, 0.1, -0.1, 0.3},
{0.6, 0.4, 0.5, -0.8, 0.0, -1.0},
{0.6, 0.4, -0.8, 0.5, -0.9, 0.1}};
std::vector<std::vector<float>> results = {{0.7, 0.6, 0.6, 0.5, 0.8, 1.0},
{-0.2, 0.6, 0.9, -0.1, 0.1, -1.0},
{-0.2, 0.6, -0.1, 0.8, 0.0, 0.2}};
for (size_t i = 0; i < inputs1.size(); ++i) {
QuantizedAddOpModel m({TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
QuantizedAddOpModel m({TensorType_INT16, {1, 2, 3, 1}, kMin, kMax},
{TensorType_INT16, {1, 2, 3, 1}, kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(), inputs1[i]);
Expand Down Expand Up @@ -435,6 +438,10 @@ TEST(QuantizedAddOpModel, QuantizedWithScalarBroadcastInt8) {
QuantizedWithScalarBroadcast<TensorType_INT8, int8_t>();
}

TEST(QuantizedAddOpModel, QuantizedWithScalarBroadcastInt16) {
QuantizedWithScalarBroadcast<TensorType_INT16, int16_t>();
}

template <enum TensorType tensor_type, typename integer_dtype>
void QuantizedWithMixedBroadcast() {
float kQuantizedTolerance = GetTolerance(-3.f, 3.f);
Expand Down Expand Up @@ -497,6 +504,10 @@ TEST(QuantizedAddOpModel, QuantizedWithMixedBroadcastInt8) {
QuantizedWithMixedBroadcast<TensorType_INT8, int8_t>();
}

TEST(QuantizedAddOpModel, QuantizedWithMixedBroadcastInt16) {
QuantizedWithMixedBroadcast<TensorType_INT16, int16_t>();
}

template <enum TensorType tensor_type, typename integer_dtype>
void QuantizedWithGenericBroadcast() {
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
Expand All @@ -523,5 +534,9 @@ TEST(QuantizedAddOpModel, QuantizedWithGenericdBroadcastInt8) {
QuantizedWithGenericBroadcast<TensorType_INT8, int8_t>();
}

TEST(QuantizedAddOpModel, QuantizedWithGenericdBroadcastInt16) {
QuantizedWithGenericBroadcast<TensorType_INT16, int16_t>();
}

} // namespace
} // namespace tflite
54 changes: 39 additions & 15 deletions tensorflow/lite/kernels/internal/reference/add.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,13 +51,18 @@ inline void Add(const ArithmeticParams& params,

// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.

// This function is used for 8-bit as well as for 16-bit, but the accumulator
// is 32-bit for both cases. The overflow does not happen due to the
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
template <typename T>
inline void AddElementwise(int size, const ArithmeticParams& params,
const uint8* input1_data, const uint8* input2_data,
uint8* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -256);
TFLITE_DCHECK_GT(params.input2_offset, -256);
TFLITE_DCHECK_LT(params.input1_offset, 256);
TFLITE_DCHECK_LT(params.input2_offset, 256);
const T* input1_data, const T* input2_data,
T* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -std::numeric_limits<T>::max());
TFLITE_DCHECK_GT(params.input2_offset, -std::numeric_limits<T>::max());
TFLITE_DCHECK_LT(params.input1_offset, std::numeric_limits<T>::max());
TFLITE_DCHECK_LT(params.input2_offset, std::numeric_limits<T>::max());

for (int i = 0; i < size; ++i) {
const int32 input1_val = params.input1_offset + input1_data[i];
Expand All @@ -78,7 +83,7 @@ inline void AddElementwise(int size, const ArithmeticParams& params,
const int32 clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<uint8>(clamped_output);
output_data[i] = static_cast<T>(clamped_output);
}
}

Expand Down Expand Up @@ -138,6 +143,24 @@ inline void Add(const ArithmeticParams& params,
const RuntimeShape& output_shape, int16* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);

int max_value = std::numeric_limits<int16>::max();

TFLITE_DCHECK_GT(params.input1_offset, -max_value);
TFLITE_DCHECK_GT(params.input2_offset, -max_value);
TFLITE_DCHECK_LT(params.input1_offset, max_value);
TFLITE_DCHECK_LT(params.input2_offset, max_value);
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}

inline void AddLSTM(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int16* input1_data,
const RuntimeShape& input2_shape, const int16* input2_data,
const RuntimeShape& output_shape, int16* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);

const int input1_shift = params.input1_shift;
const int flat_size =
Expand Down Expand Up @@ -257,13 +280,14 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
}
}

inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const uint8* input1_data,
const RuntimeShape& input2_shape,
const uint8* input2_data,
const RuntimeShape& output_shape,
uint8* output_data) {
// This function is used for 8-bit as well as for 16-bit, but the accumulator
// is 32-bit for both cases. The overflow does not happen due to the
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
template <typename T>
inline void BroadcastAdd4DSlow(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
Expand Down Expand Up @@ -313,7 +337,7 @@ inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<uint8>(clamped_output);
static_cast<T>(clamped_output);
}
}
}
Expand Down
63 changes: 46 additions & 17 deletions tensorflow/lite/kernels/sub.cc
Original file line number Diff line number Diff line change
Expand Up @@ -72,13 +72,14 @@ void Free(TfLiteContext* context, void* buffer) {
delete reinterpret_cast<OpData*>(buffer);
}

TfLiteStatus Prepare8BitSubOp(TfLiteContext* context,
const TfLiteTensor* input_1,
const TfLiteTensor* input_2, TfLiteTensor* output,
TfLiteSubParams* params, OpData* op_params,
int op_sign) {
TF_LITE_ENSURE(context,
output->type == kTfLiteUInt8 || output->type == kTfLiteInt8);
TfLiteStatus PrepareGeneralSubOp(TfLiteContext* context,
const TfLiteTensor* input_1,
const TfLiteTensor* input_2,
TfLiteTensor* output, TfLiteSubParams* params,
OpData* op_params, int op_sign) {
TF_LITE_ENSURE(context, output->type == kTfLiteUInt8 ||
output->type == kTfLiteInt8 ||
output->type == kTfLiteInt16);
const auto& input1_quantization_params = input_1->params;
const auto& input2_quantization_params = input_2->params;
const auto& output_quantization_params = output->params;
Expand All @@ -87,6 +88,9 @@ TfLiteStatus Prepare8BitSubOp(TfLiteContext* context,
if (output->type == kTfLiteUInt8) {
integer_type_min = std::numeric_limits<uint8_t>::min();
integer_type_max = std::numeric_limits<uint8_t>::max();
} else if (output->type == kTfLiteInt16) {
integer_type_min = std::numeric_limits<int16_t>::min();
integer_type_max = std::numeric_limits<int16_t>::max();
} else {
// output->type == kTfLiteInt8
integer_type_min = std::numeric_limits<int8_t>::min();
Expand All @@ -109,7 +113,11 @@ TfLiteStatus Prepare8BitSubOp(TfLiteContext* context,
op_params->input1_offset = -input1_quantization_params.zero_point;
op_params->input2_offset = -input2_quantization_params.zero_point;
op_params->output_offset = output_quantization_params.zero_point;
op_params->left_shift = 20;

// The shift is set to 15 in case of 16-bit and 20 in case of 8-bit,
// accordingly. In case of 16-bit we have 65535 << 15 which is less than 1 <<
// 31, therefore the addition will still fit in a 32 bit accumulator.
op_params->left_shift = output->type == kTfLiteInt16 ? 15 : 20;
const double twice_max_input_scale =
2 * std::max(input1_quantization_params.scale,
input2_quantization_params.scale);
Expand All @@ -135,13 +143,14 @@ TfLiteStatus Prepare8BitSubOp(TfLiteContext* context,
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
context, params->activation, output, &op_params->output_activation_min,
&op_params->output_activation_max));

return kTfLiteOk;
}

TfLiteStatus PrepareInt16SubOp(TfLiteContext* context,
const TfLiteTensor* input1,
const TfLiteTensor* input2, TfLiteTensor* output,
TfLiteSubParams* params, OpData* data) {
TfLiteStatus PrepareLSTMSubOp(TfLiteContext* context,
const TfLiteTensor* input1,
const TfLiteTensor* input2, TfLiteTensor* output,
TfLiteSubParams* params, OpData* data) {
// 16bit -> 16bit special quantized path, supporting only a rather
// narrow case of quantization parameters: zero_points must all be 0
// ("symmetric quantization") and scales must be power-of-two (which
Expand Down Expand Up @@ -208,12 +217,21 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
output_size = TfLiteIntArrayCopy(input1->dims);
}

if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
TF_LITE_ENSURE_OK(context, Prepare8BitSubOp(context, input1, input2, output,
params, data, -1));
// 8bit -> 8bit general quantized path, with general rescalings
// as well as, 16bit -> 16bit with general rescalings

bool general_16bit = output->type == kTfLiteInt16 &&
input1->type == kTfLiteInt16 &&
input2->type == kTfLiteInt16;

if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
general_16bit) {
TF_LITE_ENSURE_OK(context, PrepareGeneralSubOp(context, input1, input2,
output, params, data, -1));
} else if (output->type == kTfLiteInt16) {
TF_LITE_ENSURE_OK(context, PrepareInt16SubOp(context, input1, input2,
output, params, data));
// LSTM-special case with scale parameter of POT
TF_LITE_ENSURE_OK(context, PrepareLSTMSubOp(context, input1, input2, output,
params, data));
}

return context->ResizeTensor(context, output, output_size);
Expand Down Expand Up @@ -288,6 +306,11 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
const bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
GetTensorShape(input1), GetTensorShape(input2), &op_params);

// 16bit -> 16bit with general rescaling
bool general_16bit = output->type == kTfLiteInt16 &&
input1->type == kTfLiteInt16 &&
input2->type == kTfLiteInt16;

#define TF_LITE_SUB(type, opname, data_type) \
type::opname(op_params, GetTensorShape(input1), \
GetTensorData<data_type>(input1), GetTensorShape(input2), \
Expand All @@ -301,6 +324,12 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
} else {
TF_LITE_SUB(reference_integer_ops, Add, int8_t);
}
} else if (general_16bit) {
if (need_broadcast) {
TF_LITE_SUB(reference_ops, BroadcastAdd4DSlow, int16_t);
} else {
TF_LITE_SUB(reference_ops, Add, int16_t);
}
} else if (output->type == kTfLiteUInt8) {
if (kernel_type == kReference) {
if (need_broadcast) {
Expand Down
12 changes: 12 additions & 0 deletions tensorflow/lite/kernels/sub_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -226,6 +226,10 @@ TEST(QuantizedSubOpModel, QuantizedTestsNoActivationInt8) {
QuantizedTestsNoActivation<TensorType_INT8, int8_t>();
}

TEST(QuantizedSubOpModel, QuantizedTestsNoActivationInt16Generic) {
QuantizedTestsNoActivation<TensorType_INT16, int16_t>();
}

template <TensorType tensor_type, typename integer_dtype>
void QuantizedTestsActivationRELU_N1_TO_1() {
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
Expand Down Expand Up @@ -287,6 +291,10 @@ TEST(QuantizedSubOpModel, QuantizedVariousInputShapesInt8) {
QuantizedVariousInputShapes<TensorType_INT8, int8_t>();
}

TEST(QuantizedSubOpModel, QuantizedVariousInputShapesInt16) {
QuantizedVariousInputShapes<TensorType_INT16, int16_t>();
}

template <TensorType tensor_type, typename integer_dtype>
void QuantizedWithBroadcast() {
float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
Expand Down Expand Up @@ -315,6 +323,10 @@ TEST(QuantizedSubOpModel, QuantizedWithBroadcastInt8) {
QuantizedWithBroadcast<TensorType_INT8, int8_t>();
}

TEST(QuantizedSubOpModel, QuantizedWithBroadcastInt16) {
QuantizedWithBroadcast<TensorType_INT16, int16_t>();
}

TEST(QuantizedSubOpModel, QuantizedTestsNoActivationInt16) {
const float kMin = -1.f;
const float kMax =
Expand Down

0 comments on commit b94cb47

Please sign in to comment.