forked from codertimo/BERT-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from RahulVadisetty91/RahulVadisetty91-patch-1
Enhancements to BERT Training Script: AI Features Integration and Bug Fixes
- Loading branch information
Showing
1 changed file
with
104 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
import argparse | ||
from torch.utils.data import DataLoader | ||
from torch.optim.lr_scheduler import ReduceLROnPlateau | ||
from torch.cuda.amp import GradScaler, autocast | ||
import torch | ||
|
||
from .model import BERT | ||
from .trainer import BERTTrainer | ||
from .dataset import BERTDataset, WordVocab | ||
|
||
# Import EarlyStopping if it's from an external module or library | ||
from your_module_name import EarlyStopping # Replace 'your_module_name' with the actual module name | ||
|
||
def train(): | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument("-c", "--train_dataset", required=True, type=str, help="train dataset for training BERT") | ||
parser.add_argument("-t", "--test_dataset", type=str, default=None, help="test set for evaluating the training set") | ||
parser.add_argument("-v", "--vocab_path", required=True, type=str, help="path to the vocabulary model") | ||
parser.add_argument("-o", "--output_path", required=True, type=str, help="output path for the BERT model") | ||
|
||
parser.add_argument("-hs", "--hidden", type=int, default=256, help="hidden size of transformer model") | ||
parser.add_argument("-l", "--layers", type=int, default=8, help="number of layers") | ||
parser.add_argument("-a", "--attn_heads", type=int, default=8, help="number of attention heads") | ||
parser.add_argument("-s", "--seq_len", type=int, default=20, help="maximum sequence length") | ||
|
||
parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size") | ||
parser.add_argument("-e", "--epochs", type=int, default=10, help="number of epochs") | ||
parser.add_argument("-w", "--num_workers", type=int, default=5, help="number of dataloader workers") | ||
|
||
parser.add_argument("--with_cuda", type=bool, default=True, help="train with CUDA: true or false") | ||
parser.add_argument("--log_freq", type=int, default=10, help="print loss every n iterations") | ||
parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in the corpus") | ||
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device IDs") | ||
parser.add_argument("--on_memory", type=bool, default=True, help="load data on memory: true or false") | ||
|
||
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate of Adam") | ||
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight decay for Adam") | ||
parser.add_argument("--adam_beta1", type=float, default=0.9, help="Adam's first beta value") | ||
parser.add_argument("--adam_beta2", type=float, default=0.999, help="Adam's second beta value") | ||
|
||
# New features | ||
parser.add_argument("--dynamic_lr", type=bool, default=True, help="use dynamic learning rate adjustment") | ||
parser.add_argument("--early_stopping", type=bool, default=True, help="enable early stopping") | ||
parser.add_argument("--patience", type=int, default=3, help="patience for early stopping") | ||
parser.add_argument("--mixed_precision", type=bool, default=True, help="use mixed precision training") | ||
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="steps for gradient accumulation") | ||
parser.add_argument("--data_augmentation", type=bool, default=False, help="apply data augmentation techniques") | ||
|
||
args = parser.parse_args() | ||
|
||
print("Loading Vocab", args.vocab_path) | ||
vocab = WordVocab.load_vocab(args.vocab_path) | ||
print("Vocab Size: ", len(vocab)) | ||
|
||
print("Loading Train Dataset", args.train_dataset) | ||
train_dataset = BERTDataset(args.train_dataset, vocab, seq_len=args.seq_len, | ||
corpus_lines=args.corpus_lines, on_memory=args.on_memory, | ||
data_augmentation=args.data_augmentation) | ||
|
||
print("Loading Test Dataset", args.test_dataset) | ||
test_dataset = BERTDataset(args.test_dataset, vocab, seq_len=args.seq_len, on_memory=args.on_memory) \ | ||
if args.test_dataset is not None else None | ||
|
||
print("Creating Dataloader") | ||
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) | ||
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \ | ||
if test_dataset is not None else None | ||
|
||
print("Building BERT model") | ||
bert = BERT(len(vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads) | ||
|
||
print("Creating BERT Trainer") | ||
trainer = BERTTrainer(bert, len(vocab), train_dataloader=train_data_loader, test_dataloader=test_data_loader, | ||
lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, | ||
with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, | ||
mixed_precision=args.mixed_precision, grad_accumulation_steps=args.grad_accumulation_steps) | ||
|
||
# Dynamic Learning Rate Adjustment | ||
if args.dynamic_lr: | ||
scheduler = ReduceLROnPlateau(trainer.optimizer, mode='min', factor=0.5, patience=args.patience, verbose=True) | ||
|
||
# Early Stopping | ||
early_stopping = None | ||
if args.early_stopping: | ||
early_stopping = EarlyStopping(patience=args.patience, verbose=True) | ||
|
||
print("Training Start") | ||
for epoch in range(args.epochs): | ||
trainer.train(epoch) | ||
|
||
if test_data_loader is not None: | ||
test_loss = trainer.test(epoch) | ||
|
||
if args.dynamic_lr: | ||
scheduler.step(test_loss) | ||
|
||
if early_stopping is not None: | ||
early_stopping(test_loss, trainer.model) | ||
if early_stopping.early_stop: | ||
print("Early stopping") | ||
break | ||
|
||
trainer.save(epoch, args.output_path) |