Skip to content

Commit

Permalink
Merge pull request #77 from RapidAI/add_link_for_doc_crection
Browse files Browse the repository at this point in the history
chore: add link for doc distortion correction
  • Loading branch information
Joker1212 authored Nov 16, 2024
2 parents 46ad9a1 + 364fa9f commit 9178a2c
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 9 deletions.
8 changes: 5 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,14 @@
### 最近更新
- **2024.10.22**
- 补充复杂背景多表格检测提取方案[RapidTableDet](https://github.com/RapidAI/RapidTableDetection)
- **2024.10.29**
- 使用yolo11重新训练表格分类器,修正wired_table_rec v2逻辑坐标还原错误,并更新测评
- **2024.11.12**
- 抽离模型识别和处理过程核心阈值,方便大家进行微调适配自己的场景[微调入参参考](#核心参数)
- **2024.11.16**
- 补充文档扭曲矫正方案,可作为前置处理 [文档扭曲变形修正](https://github.com/Joker1212/RapidUnWrap)

### 简介
💖该仓库是用来对文档中表格做结构化识别的推理库,包括来自阿里读光有线和无线表格识别模型,llaipython(微信)贡献的有线表格模型,网易Qanything内置表格分类模型等。\
[快速开始](#安装) [模型评测](#指标结果) [使用建议](#使用建议) [表格旋转及透视修正](#表格旋转及透视修正) [微调入参参考](#核心参数) [常见问题](#FAQ) [更新计划](#更新计划)
[快速开始](#安装) [模型评测](#指标结果) [使用建议](#使用建议) [文档扭曲变形修正](https://github.com/Joker1212/RapidUnWrap) [表格旋转及透视修正](#表格旋转及透视修正) [微调入参参考](#核心参数) [常见问题](#FAQ) [更新计划](#更新计划)
#### 特点

**** 采用ONNXRuntime作为推理引擎,cpu下单图推理1-7s
Expand Down Expand Up @@ -190,6 +190,8 @@ html, elasp, polygons, logic_points, ocr_res = lineless_table_rec(
下载更高精度的ocr模型,在执行时传入ocr_result即可,
- 或者尝试调节rapid_ocr的参数, 根据在线demo调节参数, [modelscope](https://www.modelscope.cn/studios/liekkas/RapidOCRDemo/summary) [huggingface](https://huggingface.co/spaces/SWHL/RapidOCRDemo)
然后在推理时传入即可
2. **问:文档扭曲变形怎么处理?**
- 答:使用 [RapidUnwrap](https://github.com/Joker1212/RapidUnWrap)
3. **问:模型支持 gpu 加速吗?**
- 答:目前表格模型的推理非常快,有线表格在100ms级别,无线表格在500ms级别,
主要耗时在ocr阶段,可以参考 [rapidocr_paddle](https://rapidai.github.io/RapidOCRDocs/install_usage/rapidocr_paddle/usage/#_3)
Expand Down
13 changes: 7 additions & 6 deletions README_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,16 +16,14 @@
- **2024.10.22**
- Added the complex background multi-table detection and extraction solution [RapidTableDet](https://github.com/RapidAI/RapidTableDetection).

- **2024.10.29**
- Retrained the table classifier using YOLO11 to fix the logic coordinate restoration error in wired_table_rec v2 and updated evaluations.

- **2024.11.12**
- Extracted model recognition and processing core thresholds for easier fine-tuning according to specific scenarios. See [Core Parameters](#core-parameters).

- **2024.11.16**
- Added document distortion correction solution, which can be used as a pre-processing step [Document Distortion Correction](https://github.com/Joker1212/RapidUnWrap)
### Introduction
💖 This repository serves as an inference library for structured recognition of tables within documents, including models for wired and wireless table recognition from Alibaba DulaLight, a wired table model from llaipython (WeChat), and a built-in table classification model from NetEase Qanything.

[Quick Start](#installation) [Model Evaluation](#evaluation-results) [Usage Recommendations](#usage-recommendations) [Table Rotation & Perspective Correction](#table-rotation-and-perspective-correction) [Fine-tuning Input Parameters Reference](#core-parameters) [Frequently Asked Questions](#faqs) [Update Plan](#update-plan)
[Quick Start](#installation) [Model Evaluation](#evaluation-results) [Usage Recommendations](#usage-recommendations) [Document Distortion Correction](https://github.com/Joker1212/RapidUnWrap) [Table Rotation & Perspective Correction](#table-rotation-and-perspective-correction) [Fine-tuning Input Parameters Reference](#core-parameters) [Frequently Asked Questions](#faqs) [Update Plan](#update-plan)
#### Features

**Fast:** Uses ONNXRuntime as the inference engine, achieving 1-7 seconds per image on CPU.
Expand Down Expand Up @@ -203,7 +201,10 @@ html, elasp, polygons, logic_points, ocr_res = lineless_table_rec(
### Processing Workflow

```mermaid
A[/Table Image/] --> B([Table Classification table_cls]) B --> C([Wired Table Recognition wired_table_rec]) & D([Wireless Table Recognition lineless_table_rec]) --> E([Text Recognition rapidocr_onnxruntime]) E --> F[/HTML Structured Output/]
flowchart TD
A[/table image/] --> B([table cls table_cls])
B --> C([wired_table_rec]) & D([lineless_table_rec]) --> E([rapidocr_onnxruntime])
E --> F[/html output/]
```

### Acknowledgments
Expand Down

0 comments on commit 9178a2c

Please sign in to comment.