Skip to content

Pytorch Implementation of Reinforcement Learning Algorithms ( Soft Actor Critic(SAC)/ DDPG / TD3 /DQN / A2C/ PPO / TRPO)

Notifications You must be signed in to change notification settings

RchalYang/torchrl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TorchRL

Pytorch Implementation for RL Methods

Environments with continuous & discrete action space are supported.

Environments with 1d & 3d observation space are supported.

Multi-Process Env is supported

Requirements

  1. General Requirements
  • Pytorch 1.7
  • Gym(0.10.9)
  • Mujoco(1.50.1)
  • tabulate (for log)
  • tensorboardX (log file output)
  1. Tensorboard Requirements
  • Tensorflow: to start tensorboard or read log in tf records

Installation

  1. use use environment.yml to create virtual envrionment
    conda create -f environment.yml
    source activate py_off
  1. Mannually install all requirements

Usage

specify parameters for algorithms in config file & specify log directory / seed / device in argument

    python examples/ppo_continuous_vec.py --config config/ppo_halfcheetah.json --seed 0 --device 0 --id ppo_halfcheetah

Checkout examples folder for detailed informations

Currently contains:

  • On-Policy Methods:
    • Reinforce
    • A2C(Actor Critic)
    • PPO(Proximal Policy Optimization)
    • TRPO
  • Off-Policy Methods:
    • Soft Actor Critic: SAC(TwinSAC)
    • Deep Deterministic Policy Gradient :DDPG
    • TD3
    • DQN:
      • Basic Double DQN
      • Bootstrapped DQN
      • QRDQN

About

Pytorch Implementation of Reinforcement Learning Algorithms ( Soft Actor Critic(SAC)/ DDPG / TD3 /DQN / A2C/ PPO / TRPO)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages