This repository contains a Nipype wrapper for the FatSegNet tool available at /Deep-MI/FatSegNet. FatSegNet is a automated tool for segmenting visceral and subcuteneous adipose tissue on fat images from a two-point Dixon sequence.
If you use this wrapper please cite:
Estrada, Santiago, et al. "FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI." Magnetic resonance in medicine 83.4 (2020): 1471-1483. https:// doi.org/10.1002/mrm.28022
@article{estrada2020fatsegnet,
title={FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI},
author={Estrada, Santiago and Lu, Ran and Conjeti, Sailesh and Orozco-Ruiz, Ximena and Panos-Willuhn, Joana and Breteler, Monique MB and Reuter, Martin},
journal={Magnetic resonance in medicine},
volume={83},
number={4},
pages={1471--1483},
year={2020},
publisher={Wiley Online Library}
}
docker build -t adipose_pipeline -f docker/Dockerfile .
docker pull dznerheinlandstudie/rheinlandstudie:adipose_pipeline
docker run --rm -v /path/to/inputdata:/input \
-v /path/to/work:/work \
-v /path/to//output:/output \
dznerheinlandstudie/rheinlandstudie:adipose_pipeline \
run_adipose_pipeline \
-s /input \
-w /work \
-o /output -p 4 -t 2
The command line options are described briefly if the pipeline is started with only -h option.
The pipeline can be run with Singularity by running the singularity image as follows:
singularity build adipose_pipeline.sif docker://dznerheinlandstudie/rheinlandstudie:adipose_pipeline
When the singularit image is created, then it can be run as follows:
singularity run -B /path/to/inputdata:/input \
-B /path/to/work:/work \
-B /path/to/output:/output \
adipose_pipeline.sif \
run_adipose_pipeline \
-s /input \
-w /work \
-o /output \
-p 4 -t 2