This repository contains a Nipype wrapper for the olfactory bulb segmentation tool for T2 weighted images available at /Deep-MI/olf-bulb-segmentation.
If you use this wrapper please cite:
Estrada, Santiago, et al. "Automated olfactory bulb segmentation on high resolutional T2-weighted MRI." NeuroImage (2021). https://doi.org/10.1016/j.neuroimage.2021.118464
@article{estrada2021automated,
title={Automated Olfactory Bulb Segmentation on High Resolutional T2-Weighted MRI},
author={Estrada, Santiago and Lu, Ran and Diers, Kersten and Zeng, Weiyi and Ehses, Philipp and St{\"o}cker, Tony and Breteler, Monique MB and Reuter, Martin},
journal={NeuroImage},
pages={118464},
year={2021},
publisher={Elsevier}
}
nvidia-docker build -t ob_pipeline -f docker/Dockerfile .
## Or pull from docker hub
```bash
docker pull dznerheinlandstudie/rheinlandstudie:ob_pipeline
The pipeline can be run with docker by running the container as follows:
nvidia-docker run --rm -v /path/to/input_scans:/input \
-v /path/to/work_folder:/work \
-v /path/to/output:/output \
dznerheinlandstudie/rheinlandstudie:ob_pipeline \
run_ob_pipeline \
-s /input \
--subjects test_subject_01 \
-w /work \
-o /output \
-p 4 -g 1 -gp 1
The command line options are described briefly if the pipeline is started with only -h
option.
The pipeline can be run with Singularity by running the singularity image as follows:
singularity build ob_pipeline.sif docker://dznerheinlandstudie/rheinlandstudie:ob_pipeline
When the singularit image is created, then it can be run as follows:
singularity run --nv -B /path/to/inputdata:/input \
-B /path/to/work:/work \
-B /path/to/output:/output \
ob_pipeline.sif "export TFNUM_THREADS=2;export GOTO_NUM_THREADS=2;\
run_ob_pipeline \
-s /input \
-w /work \
-o /output \
-p 4 -g 1 -gp 1"