Skip to content

RichardMathewsII/compositional-reasoning-finetuning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

File Structure

  • assets
  • data
    • 2WikiMultihopQA
    • CompositionalCelebrities
    • FinetuningData
      • direct_dev_130.json: Direct prompting validation dataset with token count up to 130.
      • direct_train_130.json: Direct prompting training dataset with token count up to 130.
      • self_ask_dev_300.json: Self-ask prompting validation dataset with token count up to 300.
      • self_ask_train_300.json: Self-ask prompting training dataset with token count up to 300.
      • Training and validation (dev) data used in this paper can be downloaded here
    • MultihopEvaluation
  • logs
    • data_generation.log
    • evaluation.log
    • token_stats.log
  • models
    • flan-t5-small-direct.h5: Flan-T5 small model fine-tuned with direct prompting.
    • flan-t5-small-self-ask.h5: Flan-T5 small model fine-tuned with self-ask prompting.
    • t5-small-direct.h5: T5-small model fine-tuned with direct prompting.
    • t5-small-self-ask.h5: T5-small model fine-tuned with self-ask prompting.
    • Trained models can be downloaded here
  • responses
    • Naming convention: model - finetune method (if any) - with / without examplars - responses.json
    • Responses used in this paper can be downloaded here
  • results
    • Plots
      • Plots used in the paper.
    • Naming convention: model - finetune method (if any) - with / without examplars - results.json
    • Results used in this paper can be downloaded here
  • samples
    • Qualitative Analysis Samples
  • compositional-reasoning-paper.pdf
  • compositional-reasoning-proposal.pdf
  • compositional-reasoning-slides.pdf
  • evaluation.py: command line file to evaluate model performance.
  • training_demo.ipynb: Demo notebook for fine-tuning the baseline models.
  • training_utils.py: Utility tools to generate dataset, train keras model with limited ram, and etc.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published