Skip to content

Commit

Permalink
Merge pull request PaddlePaddle#1 from ultralytics/master
Browse files Browse the repository at this point in the history
Master
  • Loading branch information
Laughing-q authored Jul 10, 2020
2 parents 956511d + 520f5de commit 41ab1b2
Show file tree
Hide file tree
Showing 12 changed files with 272 additions and 188 deletions.
13 changes: 13 additions & 0 deletions .github/ISSUE_TEMPLATE/-question.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
---
name: "❓Question"
about: Ask a general question
title: ''
labels: question
assignees: ''

---

## ❔Question


## Additional context
8 changes: 6 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,9 +41,13 @@ $ pip install -U -r requirements.txt
## Tutorials

* [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb) <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
* [Kaggle](https://www.kaggle.com/ultralytics/yolov5-tutorial)
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [Google Cloud Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Google Cloud Quickstart](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)


## Inference
Expand Down
29 changes: 13 additions & 16 deletions detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

import torch.backends.cudnn as cudnn

from utils import google_utils
from models.experimental import *
from utils.datasets import *
from utils.utils import *

Expand All @@ -20,12 +20,8 @@ def detect(save_img=False):
half = device.type != 'cpu' # half precision only supported on CUDA

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model'].float() # load to FP32
# torch.save(torch.load(weights, map_location=device), weights) # update model if SourceChangeWarning
# model.fuse()
model.to(device).eval()
imgsz = check_img_size(imgsz, s=model.model[-1].stride.max()) # check img_size
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16

Expand Down Expand Up @@ -123,10 +119,11 @@ def detect(save_img=False):
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer

fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)

if save_txt or save_img:
Expand All @@ -139,26 +136,26 @@ def detect(save_img=False):

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
opt = parser.parse_args()
print(opt)

with torch.no_grad():
detect()

# # Update all models
# for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
# detect()
# create_pretrained(opt.weights, opt.weights)
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
detect()
create_pretrained(opt.weights, opt.weights)
else:
detect()
32 changes: 32 additions & 0 deletions models/experimental.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# This file contains experimental modules

from models.common import *
from utils import google_utils


class CrossConv(nn.Module):
Expand Down Expand Up @@ -107,3 +108,34 @@ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):

def forward(self, x):
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))


class Ensemble(nn.ModuleList):
# Ensemble of models
def __init__(self):
super(Ensemble, self).__init__()

def forward(self, x, augment=False):
y = []
for module in self:
y.append(module(x, augment)[0])
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.cat(y, 1) # nms ensemble
y = torch.stack(y).mean(0) # mean ensemble
return y, None # inference, train output


def attempt_load(weights, map_location=None):
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
google_utils.attempt_download(w)
model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model

if len(model) == 1:
return model[-1] # return model
else:
print('Ensemble created with %s\n' % weights)
for k in ['names', 'stride']:
setattr(model, k, getattr(model[-1], k))
return model # return ensemble
3 changes: 2 additions & 1 deletion models/export.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,8 @@
import coremltools as ct

print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape)]) # convert
# convert model from torchscript and apply pixel scaling as per detect.py
model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1/255.0, bias=[0, 0, 0])])
f = opt.weights.replace('.pt', '.mlmodel') # filename
model.save(f)
print('CoreML export success, saved as %s' % f)
Expand Down
5 changes: 3 additions & 2 deletions models/yolo.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ def __init__(self, model_cfg='yolov5s.yaml', ch=3, nc=None): # model, input cha
if type(model_cfg) is dict:
self.md = model_cfg # model dict
else: # is *.yaml
import yaml # for torch hub
with open(model_cfg) as f:
self.md = yaml.load(f, Loader=yaml.FullLoader) # model dict

Expand Down Expand Up @@ -141,14 +142,14 @@ def _print_biases(self):
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights

def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
print('Fusing layers...')
print('Fusing layers... ', end='')
for m in self.model.modules():
if type(m) is Conv:
m.conv = torch_utils.fuse_conv_and_bn(m.conv, m.bn) # update conv
m.bn = None # remove batchnorm
m.forward = m.fuseforward # update forward
torch_utils.model_info(self)

return self

def parse_model(md, ch): # model_dict, input_channels(3)
print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
Expand Down
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
Cython
numpy==1.17
opencv-python
torch>=1.4
torch>=1.5.1
matplotlib
pillow
tensorboard
Expand Down
43 changes: 19 additions & 24 deletions test.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
import argparse
import json

from utils import google_utils
from models.experimental import *
from utils.datasets import *
from utils.utils import *


def test(data,
Expand All @@ -18,32 +17,29 @@ def test(data,
verbose=False,
model=None,
dataloader=None,
save_dir='',
merge=False):
# Initialize/load model and set device
if model is None:
training = False
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device

else: # called directly
device = torch_utils.select_device(opt.device, batch_size=batch_size)
merge = opt.merge # use Merge NMS

# Remove previous
for f in glob.glob('test_batch*.jpg'):
for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')):
os.remove(f)

# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location=device)['model'].float() # load to FP32
torch_utils.model_info(model)
model.fuse()
model.to(device)
imgsz = check_img_size(imgsz, s=model.model[-1].stride.max()) # check img_size
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size

# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)

else: # called by train.py
training = True
device = next(model.parameters()).device # get model device

# Half
half = device.type != 'cpu' and torch.cuda.device_count() == 1 # half precision only supported on single-GPU
if half:
Expand All @@ -58,12 +54,11 @@ def test(data,
niou = iouv.numel()

# Dataloader
if dataloader is None: # not training
merge = opt.merge # use Merge NMS
if not training:
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
dataloader = create_dataloader(path, imgsz, batch_size, int(max(model.stride)), opt,
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]

seen = 0
Expand Down Expand Up @@ -163,10 +158,10 @@ def test(data,

# Plot images
if batch_i < 1:
f = 'test_batch%g_gt.jpg' % batch_i # filename
plot_images(img, targets, paths, f, names) # ground truth
f = 'test_batch%g_pred.jpg' % batch_i
plot_images(img, output_to_target(output, width, height), paths, f, names) # predictions
f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename
plot_images(img, targets, paths, str(f), names) # ground truth
f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i)
plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions

# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
Expand Down Expand Up @@ -196,7 +191,7 @@ def test(data,
if save_json and map50 and len(jdict):
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
f = 'detections_val2017_%s_results.json' % \
(weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
(weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
print('\nCOCO mAP with pycocotools... saving %s...' % f)
with open(f, 'w') as file:
json.dump(jdict, file)
Expand Down Expand Up @@ -229,7 +224,7 @@ def test(data,

if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
Expand Down
Loading

0 comments on commit 41ab1b2

Please sign in to comment.