Skip to content

Commit

Permalink
Merge pull request #161 from rasik210/pairs
Browse files Browse the repository at this point in the history
Pairs problem:C# solution
  • Loading branch information
RyanFehr authored Jun 6, 2018
2 parents c74fddf + cb28bf2 commit 099b6f0
Show file tree
Hide file tree
Showing 2 changed files with 131 additions and 1 deletion.
130 changes: 130 additions & 0 deletions Algorithms/Search/Pairs/Solution.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
/*
Problem: https://www.hackerrank.com/challenges/pairs/problem
C# Language Version: 7.0
.Net Framework Version: 4.7
Tool Version : Visual Studio Community 2017
Thoughts : Overall main thing to know in this problem is two pointer technique.
Before applying two pointer technique sort the input data using quick sort. We can use any sorting but
quick sort is most optimal with n (log (n)) time complexity.
Now the two pointer technique. Let's say k - 2 and we've already sorted the input in ascending order.
We will maintain a counter which will keep a count of desired pairs. Currently our pointers are 1 and 2.
Initial position of pointers is as below:
▼ ▼
1 2 3 4 5
Currente State - Difference between 2 and 1 is 1. But k is 2. Since k > current difference so we move the second pointer to
get a larger differrence as shown below:
▼ ▼
1 2 3 4 5
Currente State - Difference between 3 and 1 is 2. we got the desired pair as k is 2 so we increment the counter. Now we
move the first pointer one step further as shown below:
▼ ▼
1 2 3 4 5
Currente State - Difference between 3 and 2 is 1. But k is 2. Since k > current difference so we move the second pointer to get
a larger difference as shown below:
▼ ▼
1 2 3 4 5
So we just keep going like this until second pointer hasn't exceeded the bounds of the array.
Print the count of desired pairs in the end.
Time Complexity: O(n log(n)) // There are two operations involved. Sorting using quick sort which has n log(n) complexity
// and then simple iteration. So effectively it is n log(n) + n
Space Complexity: O(n)
*/

using System;
using System.Collections.Generic;
using System.Linq;

class Solution
{
static void Main(string[] args)
{
var arr_temp = Console.ReadLine().Split(' ');
var k = int.Parse(arr_temp[1]);
var pairCount = 0;
arr_temp = Console.ReadLine().Split(' ');
var numberArr = Array.ConvertAll(arr_temp, int.Parse);

//sort the array: Contributes O(nlog(n))
numberArr = QuickSort2(numberArr);

//two pointer technique
var pointer1 = 0;
var pointer2 = 1;

while (pointer2 < numberArr.Length)//pointer1 < pointer2 &&
{
if (numberArr[pointer2] - numberArr[pointer1] == k)
{
pairCount++;
pointer1++;
continue;
}

if (numberArr[pointer2] - numberArr[pointer1] < k)
{
pointer2++;
continue;
}

if (numberArr[pointer2] - numberArr[pointer1] > k)
{
pointer1++;
continue;
}
}
Console.WriteLine(pairCount);
}

static int[] QuickSort2(int[] arr)
{
var pivot = arr[0];
var smallerItems = new List<int>();
var equalItems = new List<int>();
var biggerItems = new List<int>();
var outputArr = new int[arr.Length];

equalItems.Add(arr[0]);

for (var i = 1; i < arr.Length; i++)
{
if (arr[i] < pivot)
smallerItems.Add(arr[i]);
else if (arr[i] > pivot)
{
biggerItems.Add(arr[i]);
}
else
equalItems.Add(arr[i]);
}

if (smallerItems.Count > 1)
smallerItems = QuickSort2(smallerItems.ToArray()).ToList();

if (biggerItems.Count > 1)
biggerItems = QuickSort2(biggerItems.ToArray()).ToList();

var j = 0;

foreach (var item in smallerItems)
outputArr[j++] = item;

foreach (var item in equalItems)
outputArr[j++] = item;

foreach (var item in biggerItems)
outputArr[j++] = item;

return outputArr;
}
}
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@
| | [Missing Numbers](https://www.hackerrank.com/challenges/missing-numbers)| <ul><li>Java</li> <li>[C++](./Algorithms/Search/Missing%20Numbers/Solution.cpp)</li><li>[C#](./Algorithms/Search/Missing%20Numbers/Solution.cs)</li><ul> | _O(n)_ | _O(n)_ | Easy | 45 | ||
| | [Minimum Loss](https://www.hackerrank.com/challenges/minimum-loss)| <ul><li>[Java](./Algorithms/Search/Minimum%20Loss/Solution.java)</li><ul> | _O(n log(n))_ | _O(n)_ | Medium | 35| ||
| | [KnightL on a Chessboard](https://www.hackerrank.com/challenges/knightl-on-chessboard)| <ul><li>Java</li></ul> | | | Medium | 35 | ||
| | [Pairs](https://www.hackerrank.com/challenges/pairs)| <ul><li>Java</li> <li>[C++](./Algorithms/Search/Pairs/Solution.cpp)</li><ul> | _O(n log(n))_ | _O(n)_ | Medium | 50 | ||
| | [Pairs](https://www.hackerrank.com/challenges/pairs)| <ul><li>Java</li> <li>[C++](./Algorithms/Search/Pairs/Solution.cpp)</li><li>[C#](./Algorithms/Search/Pairs/Solution.cs)</li><ul> | _O(n log(n))_ | _O(n)_ | Medium | 50 | ||
| | [Sherlock and Array](https://www.hackerrank.com/challenges/sherlock-and-array)| <ul><li>Java</li> <li>[C++](./Algorithms/Search/SherlockandArray/Solution.cpp)</li><ul> | | | Easy | 40 | ||
| | [Maximum Subarray Sum](https://www.hackerrank.com/challenges/maximum-subarray-sum)| <ul><li>Java</li></ul> | | | Hard | 65 | ||
| | [Connected Cells in a grid](https://www.hackerrank.com/challenges/connected-cell-in-a-grid)| <ul><li>Java</li></ul> | | | Medium | 50 | ||
Expand Down

0 comments on commit 099b6f0

Please sign in to comment.