Official PyTorch implementation of "Domain Generalization with Vital Phase Augmentation"
arXiv:2312.16451, Accepted by AAAI-24
#Clone the repo.
git clone https://github.com/excitedkid/vipaug.git
#Prepare fractal iamges
Make a new directory "fractals"
Unzip the zip file of fractal images in ./fractals
#Build environment by docker
docker pull excitedkid/vipaug:0
#Structure of dataset directory
CIFAR-10
{dataset path}/cifar10/cifar-10-batches-py ...
{dataset path}/CIFAR-10-C ...
CIFAR-100
{dataset path}/cifar100/cifar-100-python ...
{dataset path}/CIFAR-100-C ...
ImageNet
{dataset path}/train ...
You can download fractal images here.
Fractal images are from DeviantArt.
Train
python3 main.py --dataset cifar10 --aug vipaug --vital 0.001 --nonvital 0.014 --data {dataset path}
Evaluation
python3 main.py --dataset cifar10 --aug vipaug --vital 0.001 --nonvital 0.014 --data {dataset path} --data-c {corrupted dataset path} --eval eval
Train
python3 imagenet.py --gpu 0 --data {dataset path}
You can download pretrained models.
*VIPAug code is based on APR GitHub.
@misc{vipaug2024,
title={Domain Generalization with Vital Phase Augmentation},
author={Ingyun Lee and Wooju Lee and Hyun Myung},
journal={AAAI},
year={2024}
}