Skip to content

SCUT-AILab/CRN_tvqa

 
 

Repository files navigation

Cascade Reasoning Network for Text-based Visual Question Answering

Pytorch implementation for the ACM MM 2020 paper: Cascade Reasoning Network for Text-based Visual Question Answering

Install

Clone this repository, and build it with the following command.

# activate your own conda environment
# [Alternative]
# conda env create -f CRN.yaml
# conda activate CRN_env

git clone https://github.com/guanghuixu/CRN_tvqa.git
cd CRN_tvqa
python setup.py build develop

Data

Datasets Object Features OCR Features
TextVQA Open Images TextVQA Rosetta-en OCRs
ST-VQA ST-VQA Objects ST-VQA Rosetta-en OCRs
OCR-VQA OCR-VQA Objects OCR-VQA Rosetta-en OCRs
cd ~/CRN_tvqa

# Download dataset annotations
wget https://github.com/guanghuixu/CRN_tvqa/releases/download/data/data.tar.xz  
tar xf data.tar.xz

cd data

# Download detectron weights
wget http://dl.fbaipublicfiles.com/pythia/data/detectron_weights.tar.gz
tar xf detectron_weights.tar.gz

# Now download the features required, feature link is taken from the table below [Provided by M4C]

cd crn_textvqa

wget https://dl.fbaipublicfiles.com/pythia/features/open_images.tar.gz
tar xf open_images.tar.gz

wget https://dl.fbaipublicfiles.com/pythia/m4c/data/m4c_textvqa_ocr_en_frcn_features.tar.gz
tar xf m4c_textvqa_ocr_en_frcn_features.tar.gz

cd ../..

# calculate the edge features for [train, val, test] split
bash scripts/process_dataset.sh crn_textvqa data/crn_textvqa/imdb/imdb_train_ocr_en.npy

Training and Evaluation

The training and evaluation commands can be found in the ./scripts. The config files can be found in the ./configs

  1. to train the model on the TextVQA training set:
# bash scripts/<train.sh> <GPU_ids> <save_dir>
bash scripts/train_textvqa.sh 0,1 textvqa_debug

(Note: replace textvqa with other datasets and other config files to train with other datasets and configurations.)

  1. to evaluate the pretrained model on the TextVQA validation/test set:
# bash scripts/<val.sh> <GPU_ids> <save_dir> <checkpoint> <run_type>

bash scripts/val_textvqa.sh 0,1 textvqa_debug save/textvqa_debug/crn_textvqa_crn/best.ckpt val

bash scripts/val_textvqa.sh 0,1 textvqa_debug save/textvqa_debug/crn_textvqa_crn/best.ckpt inference

(Note: --<run_type> use inference instead of val to generate the EvalAI prediction files for the test set )

Citation

If you use our code in your research, please cite our paper:

@inproceedings{liu2020crn, 
title={Cascade Reasoning Network for Text-based Visual Question Answering},
author={Fen Liu, Guanghui Xu, Qi Wu, Qing Du, Wei Jia and Mingkui Tan}, 
booktitle={Proceedings of the 28th ACM International Conference on Multimedia},  
year={2020}
}

Acknowledgment

The code is greatly inspired by the MMF and M4C.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.1%
  • Other 1.9%