Skip to content

OpenModels is a flexible and extensible library for serializing and deserializing machine learning models. It's designed to support any serialization format through a plugin-based architecture, providing a safe and transparent solution for exporting and sharing predictive models.

License

Notifications You must be signed in to change notification settings

SF-Tec/openmodels

Repository files navigation

OpenModels

PyPI version License: MIT Python Versions

OpenModels is a flexible and extensible library for serializing and deserializing machine learning models. It's designed to support any serialization format through a plugin-based architecture, providing a safe and transparent solution for exporting and sharing predictive models.

Key Features

  • Format Agnostic: Supports any serialization format through a plugin-based system.
  • Extensible: Easily add support for new model types and serialization formats.
  • Safe: Provides alternatives to potentially unsafe serialization methods like Pickle.
  • Transparent: Supports human-readable formats for easy inspection of serialized models.

Installation

pip install openmodels

Quick Start

from openmodels import SerializationManager, SklearnSerializer
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification

# Create and train a scikit-learn model
X, y = make_classification(n_samples=1000, n_features=4, n_informative=2, n_redundant=0, random_state=0, shuffle=False)
model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0)
model.fit(X, y)

# Create a SerializationManager
manager = SerializationManager(SklearnSerializer())

# Serialize the model (default format is JSON)
serialized_model = manager.serialize(model)

# Deserialize the model
deserialized_model = manager.deserialize(serialized_model)

# Use the deserialized model
predictions = deserialized_model.predict(X[:5])
print(predictions)

Extensibility

OpenModels is designed to be easily extended with new serialization formats and model types.

Adding a New Format

To add a new serialization format, create a class that implements the FormatConverter protocol and register it with the FormatRegistry:

from openmodels.protocols import FormatConverter
from openmodels.format_registry import FormatRegistry
from typing import Dict, Any

class YAMLConverter(FormatConverter):
    @staticmethod
    def serialize_to_format(data: Dict[str, Any]) -> str:
        import yaml
        return yaml.dump(data)

    @staticmethod
    def deserialize_from_format(formatted_data: str) -> Dict[str, Any]:
        import yaml
        return yaml.safe_load(formatted_data)

FormatRegistry.register("yaml", YAMLConverter)

Adding a New Model Serializer

To add support for a new type of model, create a class that implements the ModelSerializer protocol:

from openmodels.protocols import ModelSerializer
from typing import Any, Dict

class TensorFlowSerializer(ModelSerializer):
    def serialize(self, model: Any) -> Dict[str, Any]:
        # Implementation for serializing TensorFlow models
        ...

    def deserialize(self, data: Dict[str, Any]) -> Any:
        # Implementation for deserializing TensorFlow models
        ...

Supported Models

OpenModels currently supports a wide range of scikit-learn models, including:

  • Classification: LogisticRegression, RandomForestClassifier, SVC, etc.
  • Regression: LinearRegression, RandomForestRegressor, SVR, etc.
  • Clustering: KMeans
  • Dimensionality Reduction: PCA

For a full list of supported models, please refer to the SUPPORTED_ESTIMATORS dictionary in serializers/sklearn_serializer.py.

Contributing

We welcome contributions to OpenModels! Whether you want to add support for new models, implement new serialization formats, or improve the existing codebase, your help is appreciated.

Please refer to our Contributing Guidelines for more information on how to get started.

Running Tests

To run the tests:

  1. Clone the repository:

    git clone https://github.com/your-repo/openmodels.git
    cd openmodels
  2. Install the package and its dependencies:

    pip install -e .
  3. Run the tests:

    pytest

License

This project is licensed under the MIT License. See the LICENSE file for details.

Changelog

For a detailed changelog, please see the CHANGELOG.md file.

Support

If you encounter any issues or have questions, please file an issue on our GitHub repository.

We're always looking to improve OpenModels. If you have any suggestions or feature requests, please let us know!

About

OpenModels is a flexible and extensible library for serializing and deserializing machine learning models. It's designed to support any serialization format through a plugin-based architecture, providing a safe and transparent solution for exporting and sharing predictive models.

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages