Skip to content

Commit

Permalink
feat: Add StandardScaler transformer (#316)
Browse files Browse the repository at this point in the history
Closes #142.

### Summary of Changes

* Added new class `StandardScaler` in `tabular/transformation`.
* Added tests.
* Added helper method `check_that_tables_are_close`.

Co-authored-by: sibre28 <86068340+sibre28@users.noreply.github.com>

---------

Co-authored-by: Simon <s6snbreu@uni-bonn.de>
Co-authored-by: megalinter-bot <129584137+megalinter-bot@users.noreply.github.com>
Co-authored-by: sibre28 <86068340+sibre28@users.noreply.github.com>
Co-authored-by: Lars Reimann <mail@larsreimann.com>
  • Loading branch information
5 people authored Jun 7, 2023
1 parent 686c2e7 commit 57b0572
Show file tree
Hide file tree
Showing 5 changed files with 439 additions and 1 deletion.
2 changes: 2 additions & 0 deletions src/safeds/data/tabular/transformation/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from ._label_encoder import LabelEncoder
from ._one_hot_encoder import OneHotEncoder
from ._range_scaler import RangeScaler
from ._standard_scaler import StandardScaler
from ._table_transformer import InvertibleTableTransformer, TableTransformer

__all__ = [
Expand All @@ -13,4 +14,5 @@
"InvertibleTableTransformer",
"TableTransformer",
"RangeScaler",
"StandardScaler",
]
180 changes: 180 additions & 0 deletions src/safeds/data/tabular/transformation/_standard_scaler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
from __future__ import annotations

from sklearn.preprocessing import StandardScaler as sk_StandardScaler

from safeds.data.tabular.containers import Table
from safeds.data.tabular.transformation._table_transformer import InvertibleTableTransformer
from safeds.exceptions import TransformerNotFittedError, UnknownColumnNameError


class StandardScaler(InvertibleTableTransformer):
"""The StandardScaler transforms column values by scaling each value to a given range."""

def __init__(self) -> None:
self._column_names: list[str] | None = None
self._wrapped_transformer: sk_StandardScaler | None = None

def fit(self, table: Table, column_names: list[str] | None) -> StandardScaler:
"""
Learn a transformation for a set of columns in a table.
This transformer is not modified.
Parameters
----------
table : Table
The table used to fit the transformer.
column_names : Optional[list[str]]
The list of columns from the table used to fit the transformer. If `None`, all columns are used.
Returns
-------
fitted_transformer : TableTransformer
The fitted transformer.
"""
if column_names is None:
column_names = table.column_names
else:
missing_columns = set(column_names) - set(table.column_names)
if len(missing_columns) > 0:
raise UnknownColumnNameError(list(missing_columns))

wrapped_transformer = sk_StandardScaler()
wrapped_transformer.fit(table._data[column_names])

result = StandardScaler()
result._wrapped_transformer = wrapped_transformer
result._column_names = column_names

return result

def transform(self, table: Table) -> Table:
"""
Apply the learned transformation to a table.
The table is not modified.
Parameters
----------
table : Table
The table to which the learned transformation is applied.
Returns
-------
transformed_table : Table
The transformed table.
Raises
------
TransformerNotFittedError
If the transformer has not been fitted yet.
"""
# Transformer has not been fitted yet
if self._wrapped_transformer is None or self._column_names is None:
raise TransformerNotFittedError

# Input table does not contain all columns used to fit the transformer
missing_columns = set(self._column_names) - set(table.column_names)
if len(missing_columns) > 0:
raise UnknownColumnNameError(list(missing_columns))

data = table._data.copy()
data.columns = table.column_names
data[self._column_names] = self._wrapped_transformer.transform(data[self._column_names])
return Table._from_pandas_dataframe(data)

def inverse_transform(self, transformed_table: Table) -> Table:
"""
Undo the learned transformation.
The table is not modified.
Parameters
----------
transformed_table : Table
The table to be transformed back to the original version.
Returns
-------
table : Table
The original table.
Raises
------
TransformerNotFittedError
If the transformer has not been fitted yet.
"""
# Transformer has not been fitted yet
if self._wrapped_transformer is None or self._column_names is None:
raise TransformerNotFittedError

data = transformed_table._data.copy()
data.columns = transformed_table.column_names
data[self._column_names] = self._wrapped_transformer.inverse_transform(data[self._column_names])
return Table._from_pandas_dataframe(data)

def is_fitted(self) -> bool:
"""
Check if the transformer is fitted.
Returns
-------
is_fitted : bool
Whether the transformer is fitted.
"""
return self._wrapped_transformer is not None

def get_names_of_added_columns(self) -> list[str]:
"""
Get the names of all new columns that have been added by the StandardScaler.
Returns
-------
added_columns : list[str]
A list of names of the added columns, ordered as they will appear in the table.
Raises
------
TransformerNotFittedError
If the transformer has not been fitted yet.
"""
if not self.is_fitted():
raise TransformerNotFittedError
return []

# (Must implement abstract method, cannot instantiate class otherwise.)
def get_names_of_changed_columns(self) -> list[str]:
"""
Get the names of all columns that may have been changed by the StandardScaler.
Returns
-------
changed_columns : list[str]
The list of (potentially) changed column names, as passed to fit.
Raises
------
TransformerNotFittedError
If the transformer has not been fitted yet.
"""
if self._column_names is None:
raise TransformerNotFittedError
return self._column_names

def get_names_of_removed_columns(self) -> list[str]:
"""
Get the names of all columns that have been removed by the StandardScaler.
Returns
-------
removed_columns : list[str]
A list of names of the removed columns, ordered as they appear in the table the StandardScaler was fitted on.
Raises
------
TransformerNotFittedError
If the transformer has not been fitted yet.
"""
if not self.is_fitted():
raise TransformerNotFittedError
return []
3 changes: 2 additions & 1 deletion tests/helpers/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from ._assertions import assert_that_tables_are_close
from ._resources import resolve_resource_path

__all__ = ["resolve_resource_path"]
__all__ = ["assert_that_tables_are_close", "resolve_resource_path"]
24 changes: 24 additions & 0 deletions tests/helpers/_assertions.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import pytest
from safeds.data.tabular.containers import Table


def assert_that_tables_are_close(table1: Table, table2: Table) -> None:
"""
Assert that two tables are almost equal.
Parameters
----------
table1: Table
The first table.
table2: Table
The table to compare the first table to.
"""
assert table1.schema == table2.schema
for column_name in table1.column_names:
assert table1.get_column(column_name).type == table2.get_column(column_name).type
assert table1.get_column(column_name).type.is_numeric()
assert table2.get_column(column_name).type.is_numeric()
for i in range(table1.number_of_rows):
entry_1 = table1.get_column(column_name).get_value(i)
entry_2 = table2.get_column(column_name).get_value(i)
assert entry_1 == pytest.approx(entry_2)
Loading

0 comments on commit 57b0572

Please sign in to comment.