Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: solution for kth order statistic #334

Merged
merged 1 commit into from
Oct 8, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions Python/kth_order_statistic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
"""
Find the kth smallest element in linear time using divide and conquer.
Recall we can do this trivially in O(nlogn) time. Sort the list and
access kth element in constant time.

This is a divide and conquer algorithm that can find a solution in O(n) time.

For more information of this algorithm:
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/lectures/08/Small08.pdf
"""

from __future__ import annotations

from random import choice


def random_pivot(lst):
"""
Choose a random pivot for the list.
We can use a more sophisticated algorithm here, such as the median-of-medians
algorithm.
"""
return choice(lst)


def kth_number(lst: list[int], k: int) -> int:
"""
Return the kth smallest number in lst.
>>> kth_number([2, 1, 3, 4, 5], 3)
3
>>> kth_number([2, 1, 3, 4, 5], 1)
1
>>> kth_number([2, 1, 3, 4, 5], 5)
5
>>> kth_number([3, 2, 5, 6, 7, 8], 2)
3
>>> kth_number([25, 21, 98, 100, 76, 22, 43, 60, 89, 87], 4)
43
"""
# pick a pivot and separate into list based on pivot.
pivot = random_pivot(lst)

# partition based on pivot
# linear time
small = [e for e in lst if e < pivot]
big = [e for e in lst if e > pivot]

# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(small) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(small) < k - 1:
return kth_number(big, k - len(small) - 1)
# pivot is in elements smaller than k
else:
return kth_number(small, k)


if __name__ == "__main__":
import doctest

doctest.testmod()