-
Notifications
You must be signed in to change notification settings - Fork 1
Description
I have reproduced FSHNet several times, with the batch_size and other configurations completely consistent with the original code. However, the results are unstable and lower than expected. I ran the experiments three times using different seeds, and the results are as follows:
I encountered the same issue when reproducing Scatterformer. Have you experienced this kind of problem before?
2026-01-22 14:27:01,211 INFO ----------------Nuscene detection_cvpr_2019 results-----------------
***car error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.17, 0.15, 0.10, 0.28, 0.19 | 79.60, 88.09, 90.66, 91.70 | mean AP: 0.8751432550916238
***truck error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.32, 0.19, 0.10, 0.27, 0.24 | 42.69, 59.23, 67.25, 72.03 | mean AP: 0.6029768758681523
***construction_vehicle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.70, 0.44, 0.92, 0.13, 0.28 | 3.43, 17.20, 34.35, 49.82 | mean AP: 0.26200965574198887
***bus error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.29, 0.18, 0.07, 0.45, 0.23 | 57.79, 77.36, 88.43, 91.10 | mean AP: 0.7866938759643214
***trailer error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.52, 0.22, 0.50, 0.21, 0.17 | 13.79, 34.84, 54.86, 64.62 | mean AP: 0.42025192120351107
***barrier error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.19, 0.26, 0.06, nan, nan | 62.78, 72.32, 75.48, 76.62 | mean AP: 0.7180176944759702
***motorcycle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.19, 0.23, 0.22, 0.45, 0.26 | 66.25, 76.68, 77.65, 78.07 | mean AP: 0.7466188352302552
***bicycle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.16, 0.25, 0.40, 0.20, 0.01 | 54.56, 57.15, 57.40, 57.79 | mean AP: 0.5672661737185737
***pedestrian error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.13, 0.27, 0.34, 0.22, 0.09 | 86.25, 87.51, 88.56, 89.35 | mean AP: 0.8791682325984863
***traffic_cone error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.12, 0.31, nan, nan, nan | 75.28, 76.17, 77.53, 79.72 | mean AP: 0.7717357754804642
--------------average performance-------------
trans_err: 0.2786
scale_err: 0.2499
orient_err: 0.3019
vel_err: 0.2761
attr_err: 0.1850
mAP: 0.6630
NDS: 0.7023
2026-01-20 18:35:38,778 INFO recall_roi_0.3: 0.000000
2026-01-20 18:35:38,778 INFO recall_rcnn_0.3: 0.821117
2026-01-20 18:35:38,778 INFO recall_roi_0.5: 0.000000
2026-01-20 18:35:38,778 INFO recall_rcnn_0.5: 0.634022
2026-01-20 18:35:38,778 INFO recall_roi_0.7: 0.000000
2026-01-20 18:35:38,778 INFO recall_rcnn_0.7: 0.312125
2026-01-20 18:35:38,781 INFO Average predicted number of objects(6019 samples): 213.981
2026-01-20 18:39:51,768 INFO The predictions of NuScenes have been saved to /root/autodl-tmp/HEDNet-main_trans/tools/output/eval/epoch_36/val/default/final_result/data/results_nusc.json
2026-01-20 18:42:50,110 INFO ----------------Nuscene detection_cvpr_2019 results-----------------
***car error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.16, 0.15, 0.09, 0.27, 0.19 | 80.14, 88.41, 90.95, 92.12 | mean AP: 0.8790625719761649
***truck error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.33, 0.20, 0.08, 0.26, 0.23 | 39.05, 60.29, 68.26, 72.47 | mean AP: 0.600194236052701
***construction_vehicle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.69, 0.44, 0.83, 0.14, 0.30 | 4.05, 17.45, 35.13, 52.36 | mean AP: 0.27247677572441287
***bus error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.30, 0.18, 0.05, 0.49, 0.22 | 56.80, 78.55, 88.73, 91.01 | mean AP: 0.78774056082737
***trailer error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.52, 0.23, 0.47, 0.22, 0.16 | 12.18, 38.05, 55.67, 67.54 | mean AP: 0.4335911241651135
***barrier error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.18, 0.25, 0.07, nan, nan | 65.51, 74.39, 77.56, 78.74 | mean AP: 0.7405045677135302
***motorcycle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.18, 0.22, 0.21, 0.48, 0.27 | 66.61, 78.53, 79.60, 80.02 | mean AP: 0.7618981289304854
***bicycle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.15, 0.25, 0.38, 0.19, 0.02 | 57.98, 60.71, 61.05, 61.47 | mean AP: 0.6030407400024487
***pedestrian error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.12, 0.27, 0.34, 0.21, 0.09 | 87.30, 88.45, 89.40, 90.29 | mean AP: 0.8885940174977791
***traffic_cone error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.11, 0.31, nan, nan, nan | 77.21, 78.24, 79.59, 81.85 | mean AP: 0.7922146065244937
--------------average performance-------------
trans_err: 0.2766
scale_err: 0.2485
orient_err: 0.2802
vel_err: 0.2840
attr_err: 0.1855
mAP: 0.6759
NDS: 0.7105
26-01-21 14:56:37,186 INFO Generate label finished(sec_per_example: 0.0186 second).
2026-01-21 14:56:37,186 INFO recall_roi_0.3: 0.000000
2026-01-21 14:56:37,186 INFO recall_rcnn_0.3: 0.810577
2026-01-21 14:56:37,186 INFO recall_roi_0.5: 0.000000
2026-01-21 14:56:37,186 INFO recall_rcnn_0.5: 0.616258
2026-01-21 14:56:37,186 INFO recall_roi_0.7: 0.000000
2026-01-21 14:56:37,186 INFO recall_rcnn_0.7: 0.299738
2026-01-21 14:56:37,189 INFO Average predicted number of objects(6019 samples): 258.755
2026-01-21 15:01:38,084 INFO The predictions of NuScenes have been saved to /root/autodl-tmp/FSHNet/tools/output/eval/eval_with_train/epoch_36/val/final_result/data/results_nusc.json
2026-01-21 15:05:11,029 INFO ----------------Nuscene detection_cvpr_2019 results-----------------
***car error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.17, 0.15, 0.10, 0.29, 0.20 | 78.83, 87.60, 90.16, 91.33 | mean AP: 0.8698178415137661
***truck error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.34, 0.20, 0.09, 0.26, 0.23 | 39.85, 58.65, 67.50, 71.72 | mean AP: 0.5942878120287329
***construction_vehicle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.73, 0.45, 0.83, 0.13, 0.33 | 3.57, 15.66, 33.09, 48.71 | mean AP: 0.252573749876297
***bus error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.31, 0.17, 0.08, 0.47, 0.25 | 54.99, 75.80, 87.25, 89.30 | mean AP: 0.7683537925814595
***trailer error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.56, 0.22, 0.49, 0.22, 0.18 | 12.52, 34.76, 52.59, 61.49 | mean AP: 0.4033745579840534
***barrier error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.19, 0.25, 0.07, nan, nan | 66.68, 76.58, 79.96, 81.04 | mean AP: 0.7606421474136371
***motorcycle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.19, 0.23, 0.23, 0.49, 0.26 | 66.18, 77.54, 78.52, 78.91 | mean AP: 0.7528854429322187
***bicycle error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.16, 0.25, 0.34, 0.21, 0.02 | 55.59, 58.01, 58.25, 58.68 | mean AP: 0.5763427829977583
***pedestrian error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.13, 0.27, 0.36, 0.23, 0.09 | 86.04, 87.28, 88.30, 89.19 | mean AP: 0.8770465046821916
***traffic_cone error@trans, scale, orient, vel, attr | AP@0.5, 1.0, 2.0, 4.0
0.12, 0.31, nan, nan, nan | 75.48, 76.49, 77.99, 80.30 | mean AP: 0.7756535543336284
--------------average performance-------------
trans_err: 0.2891
scale_err: 0.2501
orient_err: 0.2882
vel_err: 0.2893
attr_err: 0.1936
mAP: 0.6631
NDS: 0.7005