You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Creation of a PDESolution object like the following:
julia>solve(prob, Tsit5())
PDESolution:
Return Code:
Success
Dependent variables:w(x, t): (16, 232) sized solution
v(x, t): (16, 232) sized solution
Domain:
t ∈ (0.0, 14.0) with 232 non-uniform points. average step size 0.06060606060606061
x ∈ (0.0, 1.0) with 16 points, step size 0.06666666666666667
From system:
Equations:L"\begin{align}-0.05 + 0.015 \frac{\mathrm{d}}{\mathrm{d}t} v\left( x, t \right) - 0.000225 \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} v\left( x, t \right) + w\left( x, t \right) - v\left( x, t \right) \left( 1 - v\left( x, t \right) \right) \left( -0.1 + v\left( x, t \right) \right) &= 0 \\-0.05 - 0.5 v\left( x, t \right) + \frac{\mathrm{d}}{\mathrm{d}t} w\left( x, t \right) + 2 w\left( x, t \right) &= 0\end{align}"
Boundary/Initial Conditions:L"\begin{align}v\left( x, 0 \right) &= 0 \\w\left( x, 0 \right) &= 0 \\\frac{\mathrm{d}}{\mathrm{d}x} v\left( 0, t \right) &= - 50000 t^{3} e^{ - 15 t} \\\frac{\mathrm{d}}{\mathrm{d}x} v\left( 1, t \right) &= 0\end{align}"
Minimal Reproducible Example 👇
using ModelingToolkit
@independent_variables x t
@variablesv(..) w(..)
Dx =Differential(x)
Dxx = Dx^2
Dt =Differential(t)
const L =1.0const ε =0.015const b =0.5const γ =2.0const c =0.05f(v) = v * (v -0.1) * (1.0- v)
i₀(t) =50000.0t^3*exp(-15.0t)
eqs = [ε *Dt(v(x, t)) ~ ε^2*Dxx(v(x, t)) +f(v(x, t)) -w(x, t) + c,
Dt(w(x, t)) ~ b *v(x, t) - γ *w(x, t) + c]
bcs = [v(x, 0.0) ~0.0,
w(x, 0) ~0.0,
Dx(v(0, t)) ~-i₀(t),
Dx(v(L, t)) ~0.0]
domains = [x ∈ (0.0, L),
t ∈ (0.0, 14.0)]
ivs = [x, t]
dvs = [v(x, t), w(x, t)]
pde_sys =PDESystem(eqs, bcs, domains, ivs, dvs; name =Symbol("FitzHugh-Nagumo"))
using MethodOfLines
N =15# equidistant discretization intervals
dx = (L -0.0) / N
dxs = [x => dx]
order =2
discretization =MOLFiniteDifference(dxs, t; approx_order = order)
ode_sys, tspan =symbolic_discretize(pde_sys, discretization)
simp_sys =structural_simplify(ode_sys)
ode_prob =ODEProblem(simp_sys, nothing, tspan)
solve(ode_prob)
Error & Stacktrace ⚠️
julia>solve(prob)
ERROR: MethodError: no method matching SciMLBase.PDETimeSeriesSolution(::SciMLBase.PDETimeSeriesSolution{…}, ::MethodOfLines.MOLMetadata{…})
Closest candidates are:
SciMLBase.PDETimeSeriesSolution(::SciMLBase.AbstractODESolution{T}, ::MethodOfLines.MOLMetadata) where T
@ MethodOfLines ~/.julia/packages/MethodOfLines/iJ5Ue/src/interface/solution/timedep.jl:11
Stacktrace:
[1] wrap_sol(sol::SciMLBase.PDETimeSeriesSolution{…}, metadata::MethodOfLines.MOLMetadata{…})
@ SciMLBase ~/.julia/packages/SciMLBase/jU6iu/src/solutions/pde_solutions.jl:115
[2] wrap_sol(sol::SciMLBase.PDETimeSeriesSolution{…})
@ SciMLBase ~/.julia/packages/SciMLBase/jU6iu/src/solutions/basic_solutions.jl:95
[3] solve(::ODEProblem{…}; sensealg::Nothing, u0::Nothing, p::Nothing, wrap::Val{…}, kwargs::@Kwargs{})
@ DiffEqBase ~/.julia/packages/DiffEqBase/slKc5/src/solve.jl:1003
[4] solve(::ODEProblem{Vector{…}, Tuple{…}, true, ModelingToolkit.MTKParameters{…}, ODEFunction{…}, @Kwargs{}, MethodOfLines.MOLMetadata{…}})
@ DiffEqBase ~/.julia/packages/DiffEqBase/slKc5/src/solve.jl:993
[5] top-level scope
@ REPL[14]:1
Some type information was truncated. Use `show(err)` to see complete types.
Environment (please complete the following information):
Output of using Pkg; Pkg.status()
(ROM_FitzhughNagumo) pkg> st
Project ROM_FitzhughNagumo v0.1.0
Status `~/.julia/dev/ROM_FitzhughNagumo/Project.toml`
[0c46a032] DifferentialEquations v7.14.0
[94925ecb] MethodOfLines v0.11.3
⌃ [961ee093] ModelingToolkit v9.32.0
Info Packages marked with ⌃ have new versions available and may be upgradable.
Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
Describe the bug 🐞
When solving the Fitzhugh Nagumo equation on https://docs.sciml.ai/ModelOrderReduction/dev/tutorials/deim_FitzHugh-Nagumo/ using the single argument
solve
call, I get a MethodError. I don't get the error when I specify the solver.Expected behavior
Creation of a PDESolution object like the following:
Minimal Reproducible Example 👇
Error & Stacktrace⚠️
Environment (please complete the following information):
using Pkg; Pkg.status()
using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
versioninfo()
Additional context
Add any other context about the problem here.
The text was updated successfully, but these errors were encountered: