-
-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
refactor: Move NonlinearSolvePolyAlgorithm to Base (#494)
* refactor: Move NonlinearSolvePolyAlgorithm to Base * test: Make NonlinearSolve use 1.3 Base * refactor: Remove unnecessary snippet * refactor: Don't use duplicate solve * refactor: Test Base export NonlinearSolvePolyAlgorithm
- Loading branch information
Showing
8 changed files
with
552 additions
and
549 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
""" | ||
NonlinearSolvePolyAlgorithm(algs; start_index::Int = 1) | ||
A general way to define PolyAlgorithms for `NonlinearProblem` and | ||
`NonlinearLeastSquaresProblem`. This is a container for a tuple of algorithms that will be | ||
tried in order until one succeeds. If none succeed, then the algorithm with the lowest | ||
residual is returned. | ||
### Arguments | ||
- `algs`: a tuple of algorithms to try in-order! (If this is not a Tuple, then the | ||
returned algorithm is not type-stable). | ||
### Keyword Arguments | ||
- `start_index`: the index to start at. Defaults to `1`. | ||
### Example | ||
```julia | ||
using NonlinearSolve | ||
alg = NonlinearSolvePolyAlgorithm((NewtonRaphson(), Broyden())) | ||
``` | ||
""" | ||
@concrete struct NonlinearSolvePolyAlgorithm <: AbstractNonlinearSolveAlgorithm | ||
static_length <: Val | ||
algs <: Tuple | ||
start_index::Int | ||
end | ||
|
||
function NonlinearSolvePolyAlgorithm(algs; start_index::Int = 1) | ||
@assert 0 < start_index ≤ length(algs) | ||
algs = Tuple(algs) | ||
return NonlinearSolvePolyAlgorithm(Val(length(algs)), algs, start_index) | ||
end | ||
|
||
@concrete mutable struct NonlinearSolvePolyAlgorithmCache <: AbstractNonlinearSolveCache | ||
static_length <: Val | ||
prob <: AbstractNonlinearProblem | ||
|
||
caches <: Tuple | ||
alg <: NonlinearSolvePolyAlgorithm | ||
|
||
best::Int | ||
current::Int | ||
nsteps::Int | ||
|
||
stats::NLStats | ||
total_time::Float64 | ||
maxtime | ||
|
||
retcode::ReturnCode.T | ||
force_stop::Bool | ||
|
||
maxiters::Int | ||
internalnorm | ||
|
||
u0 | ||
u0_aliased | ||
alias_u0::Bool | ||
end | ||
|
||
function SII.symbolic_container(cache::NonlinearSolvePolyAlgorithmCache) | ||
return cache.caches[cache.current] | ||
end | ||
SII.state_values(cache::NonlinearSolvePolyAlgorithmCache) = cache.u0 | ||
|
||
function Base.show(io::IO, ::MIME"text/plain", cache::NonlinearSolvePolyAlgorithmCache) | ||
println(io, "NonlinearSolvePolyAlgorithmCache with \ | ||
$(Utils.unwrap_val(cache.static_length)) algorithms:") | ||
best_alg = ifelse(cache.best == -1, "nothing", cache.best) | ||
println(io, " Best Algorithm: $(best_alg)") | ||
println( | ||
io, " Current Algorithm: [$(cache.current) / $(Utils.unwrap_val(cache.static_length))]" | ||
) | ||
println(io, " nsteps: $(cache.nsteps)") | ||
println(io, " retcode: $(cache.retcode)") | ||
print(io, " Current Cache: ") | ||
NonlinearSolveBase.show_nonlinearsolve_cache(io, cache.caches[cache.current], 4) | ||
end | ||
|
||
function InternalAPI.reinit!( | ||
cache::NonlinearSolvePolyAlgorithmCache, args...; p = cache.p, u0 = cache.u0 | ||
) | ||
foreach(cache.caches) do cache | ||
InternalAPI.reinit!(cache, args...; p, u0) | ||
end | ||
cache.current = cache.alg.start_index | ||
InternalAPI.reinit!(cache.stats) | ||
cache.nsteps = 0 | ||
cache.total_time = 0.0 | ||
end | ||
|
||
function SciMLBase.__init( | ||
prob::AbstractNonlinearProblem, alg::NonlinearSolvePolyAlgorithm, args...; | ||
stats = NLStats(0, 0, 0, 0, 0), maxtime = nothing, maxiters = 1000, | ||
internalnorm = L2_NORM, alias_u0 = false, verbose = true, kwargs... | ||
) | ||
if alias_u0 && !ArrayInterface.ismutable(prob.u0) | ||
verbose && @warn "`alias_u0` has been set to `true`, but `u0` is \ | ||
immutable (checked using `ArrayInterface.ismutable`)." | ||
alias_u0 = false # If immutable don't care about aliasing | ||
end | ||
|
||
u0 = prob.u0 | ||
u0_aliased = alias_u0 ? copy(u0) : u0 | ||
alias_u0 && (prob = SciMLBase.remake(prob; u0 = u0_aliased)) | ||
|
||
return NonlinearSolvePolyAlgorithmCache( | ||
alg.static_length, prob, | ||
map(alg.algs) do solver | ||
SciMLBase.__init( | ||
prob, solver, args...; | ||
stats, maxtime, internalnorm, alias_u0, verbose, kwargs... | ||
) | ||
end, | ||
alg, -1, alg.start_index, 0, stats, 0.0, maxtime, | ||
ReturnCode.Default, false, maxiters, internalnorm, | ||
u0, u0_aliased, alias_u0 | ||
) | ||
end | ||
|
||
@generated function InternalAPI.step!( | ||
cache::NonlinearSolvePolyAlgorithmCache{Val{N}}, args...; kwargs... | ||
) where {N} | ||
calls = [] | ||
cache_syms = [gensym("cache") for i in 1:N] | ||
for i in 1:N | ||
push!(calls, | ||
quote | ||
$(cache_syms[i]) = cache.caches[$(i)] | ||
if $(i) == cache.current | ||
InternalAPI.step!($(cache_syms[i]), args...; kwargs...) | ||
$(cache_syms[i]).nsteps += 1 | ||
if !NonlinearSolveBase.not_terminated($(cache_syms[i])) | ||
if SciMLBase.successful_retcode($(cache_syms[i]).retcode) | ||
cache.best = $(i) | ||
cache.force_stop = true | ||
cache.retcode = $(cache_syms[i]).retcode | ||
else | ||
cache.current = $(i + 1) | ||
end | ||
end | ||
return | ||
end | ||
end) | ||
end | ||
|
||
push!(calls, quote | ||
if !(1 ≤ cache.current ≤ length(cache.caches)) | ||
minfu, idx = findmin_caches(cache.prob, cache.caches) | ||
cache.best = idx | ||
cache.retcode = cache.caches[idx].retcode | ||
cache.force_stop = true | ||
return | ||
end | ||
end) | ||
|
||
return Expr(:block, calls...) | ||
end | ||
|
||
# Original is often determined on runtime information especially for PolyAlgorithms so it | ||
# is best to never specialize on that | ||
function build_solution_less_specialize( | ||
prob::AbstractNonlinearProblem, alg, u, resid; | ||
retcode = ReturnCode.Default, original = nothing, left = nothing, | ||
right = nothing, stats = nothing, trace = nothing, kwargs... | ||
) | ||
return SciMLBase.NonlinearSolution{ | ||
eltype(eltype(u)), ndims(u), typeof(u), typeof(resid), typeof(prob), | ||
typeof(alg), Any, typeof(left), typeof(stats), typeof(trace) | ||
}( | ||
u, resid, prob, alg, retcode, original, left, right, stats, trace | ||
) | ||
end | ||
|
||
function findmin_caches(prob::AbstractNonlinearProblem, caches) | ||
resids = map(caches) do cache | ||
cache === nothing && return nothing | ||
return NonlinearSolveBase.get_fu(cache) | ||
end | ||
return findmin_resids(prob, resids) | ||
end | ||
|
||
@views function findmin_resids(prob::AbstractNonlinearProblem, caches) | ||
norm_fn = prob isa NonlinearLeastSquaresProblem ? Base.Fix2(norm, 2) : | ||
Base.Fix2(norm, Inf) | ||
idx = findfirst(Base.Fix2(!==, nothing), caches) | ||
# This is an internal function so we assume that inputs are consistent and there is | ||
# atleast one non-`nothing` value | ||
fx_idx = norm_fn(caches[idx]) | ||
idx == length(caches) && return fx_idx, idx | ||
fmin = @closure xᵢ -> begin | ||
xᵢ === nothing && return oftype(fx_idx, Inf) | ||
fx = norm_fn(xᵢ) | ||
return ifelse(isnan(fx), oftype(fx, Inf), fx) | ||
end | ||
x_min, x_min_idx = findmin(fmin, caches[(idx + 1):length(caches)]) | ||
x_min < fx_idx && return x_min, x_min_idx + idx | ||
return fx_idx, idx | ||
end |
Oops, something went wrong.
6f043bf
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@JuliaRegistrator register subdir=lib/NonlinearSolveBase
6f043bf
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Registration pull request created: JuliaRegistries/General/118813
Tip: Release Notes
Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.
To add them here just re-invoke and the PR will be updated.
Tagging
After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.
This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via: