@@ -104,11 +104,13 @@ def as_lazy_data(data, chunks=None, asarray=False):
104104
105105def _co_realise_lazy_arrays (arrays ):
106106 """
107- Compute multiple lazy arrays together + return a list of real values.
107+ Compute multiple lazy arrays and return a list of real values.
108108
109- Also converts any MaskedConstants to arrays, to ensure that the dtypes of
110- the results are the same as the inputs.
111- This part is only necessary because of problems with masked constants.
109+ All the arrays are computed together, so they can share results from common
110+ graph elements.
111+
112+ Also converts any MaskedConstants returned into masked arrays, to ensure
113+ that all return values are writeable NumPy array objects.
112114
113115 """
114116 results = list (da .compute (* arrays ))
@@ -120,7 +122,7 @@ def _co_realise_lazy_arrays(arrays):
120122 # Recorded in https://github.com/dask/dask/issues/2111.
121123 result = ma .masked_array (result .data , mask = result .mask ,
122124 dtype = array .dtype )
123- # Replace the original result array .
125+ # When we change one, update the result list .
124126 results [i_array ] = result
125127 return results
126128
@@ -182,7 +184,7 @@ def co_realise_cubes(cubes):
182184
183185 This fetches lazy content, equivalent to accessing each cube.data.
184186 However, lazy calculations and data fetches can be shared between the
185- calculations , improving performance.
187+ computations , improving performance.
186188
187189 """
188190 results = _co_realise_lazy_arrays ([cube .core_data () for cube in cubes ])
0 commit comments