-
Notifications
You must be signed in to change notification settings - Fork 836
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #359 from cliveseldon/mlflow_example
Mlflow Example
- Loading branch information
Showing
8 changed files
with
388 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
|
||
|
||
.PHONY: clean | ||
clean: | ||
rm -rf mlflow | ||
rm -rf mlruns | ||
rm -rf __pycache__ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
from mlflow import pyfunc | ||
import os | ||
import pandas as pd | ||
|
||
class MyMlflowModel(object): | ||
|
||
def __init__(self): | ||
self.pyfunc_model = pyfunc.load_pyfunc("mlruns/0/"+next(os.walk('mlruns/0'))[1][0]+"/artifacts/model") | ||
|
||
def predict(self,X,features_names): | ||
if not features_names is None and len(features_names)>0: | ||
df = pd.DataFrame(data=X,columns=features_names) | ||
else: | ||
df = pd.DataFrame(data=X) | ||
return self.pyfunc_model.predict(df) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
{ | ||
"features":[ | ||
{ | ||
"name":"alcohol", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,12] | ||
}, | ||
{ | ||
"name":"chlorides", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
}, | ||
{ | ||
"name":"citric acid", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
}, | ||
{ | ||
"name":"density", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
}, | ||
{ | ||
"name":"fixed acidity", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
}, | ||
{ | ||
"name":"free sulphur dioxide", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
}, | ||
{ | ||
"name":"pH", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,7] | ||
}, | ||
{ | ||
"name":"residual sugar", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
}, | ||
{ | ||
"name":"sulphates", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
}, | ||
{ | ||
"name":"total sulphur dioxide", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,100] | ||
}, | ||
{ | ||
"name":"volatile acidity", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
} | ||
], | ||
"targets":[ | ||
{ | ||
"name":"class", | ||
"dtype":"FLOAT", | ||
"ftype":"continuous", | ||
"range":[0,1] | ||
} | ||
] | ||
} | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
{ | ||
"apiVersion": "machinelearning.seldon.io/v1alpha2", | ||
"kind": "SeldonDeployment", | ||
"metadata": { | ||
"labels": { | ||
"app": "seldon" | ||
}, | ||
"name": "mlflow-example" | ||
}, | ||
"spec": { | ||
"name": "mlflow-dep", | ||
"oauth_key": "oauth-key", | ||
"oauth_secret": "oauth-secret", | ||
"predictors": [ | ||
{ | ||
"componentSpecs": [{ | ||
"spec": { | ||
"containers": [ | ||
{ | ||
"image": "mlflow_model:0.1", | ||
"imagePullPolicy": "IfNotPresent", | ||
"name": "model", | ||
"resources": { | ||
"requests": { | ||
"memory": "1Mi" | ||
} | ||
} | ||
} | ||
], | ||
"terminationGracePeriodSeconds": 20 | ||
} | ||
}], | ||
"graph": { | ||
"children": [], | ||
"name": "model", | ||
"endpoint": { | ||
"type" : "REST" | ||
}, | ||
"type": "MODEL" | ||
}, | ||
"name": "mlflow-pred", | ||
"replicas": 1 | ||
} | ||
] | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
MODEL_NAME=MyMlflowModel | ||
API_TYPE=REST | ||
SERVICE_TYPE=MODEL | ||
PERSISTENCE=0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Run MLFlow Model in Seldon Core\n", | ||
"\n", | ||
"This notebook shows how you can easily train a model using [MLFlow](https://mlflow.org/) and serve requests within Seldon Core on Kubernetes.\n", | ||
"\n", | ||
"Dependencies\n", | ||
"\n", | ||
" * ```pip install seldon-core```\n", | ||
" * ```pip install mlflow```\n", | ||
" \n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Train Example MlFlow Model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!git clone https://github.com/mlflow/mlflow" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!python mlflow/examples/sklearn_elasticnet_wine/train.py" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Test Inference Locally" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!pygmentize MyMlflowModel.py" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!s2i build -E environment_rest . seldonio/seldon-core-s2i-python3:0.5-SNAPSHOT mlflow_model:0.1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!docker run --name \"mlflow_model\" -d --rm -p 5000:5000 mlflow_model:0.1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!curl -H \"Content-Type: application/x-www-form-urlencoded\" -g 0.0.0.0:5000/predict -d 'json={\"data\":{\"names\":[\"alcohol\", \"chlorides\", \"citric acid\", \"density\", \"fixed acidity\", \"free sulfur dioxide\", \"pH\", \"residual sugar\", \"sulphates\", \"total sulfur dioxide\", \"volatile acidity\"],\"ndarray\":[[12.8, 0.029, 0.48, 0.98, 6.2, 29, 3.33, 1.2, 0.39, 75, 0.66]]}}'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!curl -H \"Content-Type: application/x-www-form-urlencoded\" -g 0.0.0.0:5000/predict -d 'json={\"data\":{\"ndarray\":[[12.8, 0.029, 0.48, 0.98, 6.2, 29, 3.33, 1.2, 0.39, 75, 0.66]]}}'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!docker rm mlflow_model --force" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Test Inference on Minikube\n", | ||
"\n", | ||
"**Due to a [minikube/s2i issue](https://github.com/SeldonIO/seldon-core/issues/253) you will need [s2i >= 1.1.13](https://github.com/openshift/source-to-image/releases/tag/v1.1.13)**" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!minikube start --memory 4096" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl create clusterrolebinding kube-system-cluster-admin --clusterrole=cluster-admin --serviceaccount=kube-system:default" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!helm init" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl rollout status deploy/tiller-deploy -n kube-system" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!helm install ../../../helm-charts/seldon-core-crd --name seldon-core-crd --set usage_metrics.enabled=true\n", | ||
"!helm install ../../../helm-charts/seldon-core --name seldon-core " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!eval $(minikube docker-env) && s2i build -E environment_rest . seldonio/seldon-core-s2i-python3:0.5-SNAPSHOT mlflow_model:0.1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl create -f deployment.json" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!kubectl get seldondeployments mlflow-example -o jsonpath='{.status}' " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!seldon-core-api-tester contract.json \\\n", | ||
" `minikube ip` `kubectl get svc -l app=seldon-apiserver-container-app -o jsonpath='{.items[0].spec.ports[0].nodePort}'` \\\n", | ||
" --oauth-key oauth-key --oauth-secret oauth-secret -p" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!minikube delete" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
mlflow | ||
sklearn | ||
pandas |
Oops, something went wrong.