Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump tensorflow from 1.15.4 to 2.4.0 in /testing/scripts #2790

Merged
merged 1 commit into from
Dec 18, 2020

Conversation

dependabot[bot]
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github Dec 17, 2020

Bumps tensorflow from 1.15.4 to 2.4.0.

Release notes

Sourced from tensorflow's releases.

TensorFlow 2.4.0

Release 2.4.0

Major Features and Improvements

  • tf.distribute introduces experimental support for asynchronous training of models via the tf.distribute.experimental.ParameterServerStrategy API. Please see the tutorial to learn more.

  • MultiWorkerMirroredStrategy is now a stable API and is no longer considered experimental. Some of the major improvements involve handling peer failure and many bug fixes. Please check out the detailed tutorial on Multi-worker training with Keras.

  • Introduces experimental support for a new module named tf.experimental.numpy which is a NumPy-compatible API for writing TF programs. See the detailed guide to learn more. Additional details below.

  • Adds Support for TensorFloat-32 on Ampere based GPUs. TensorFloat-32, or TF32 for short, is a math mode for NVIDIA Ampere based GPUs and is enabled by default.

  • A major refactoring of the internals of the Keras Functional API has been completed, that should improve the reliability, stability, and performance of constructing Functional models.

  • Keras mixed precision API tf.keras.mixed_precision is no longer experimental and allows the use of 16-bit floating point formats during training, improving performance by up to 3x on GPUs and 60% on TPUs. Please see below for additional details.

  • TensorFlow Profiler now supports profiling MultiWorkerMirroredStrategy and tracing multiple workers using the sampling mode API.

  • TFLite Profiler for Android is available. See the detailed guide to learn more.

  • TensorFlow pip packages are now built with CUDA11 and cuDNN 8.0.2.

Breaking Changes

  • TF Core:

    • Certain float32 ops run in lower precsion on Ampere based GPUs, including matmuls and convolutions, due to the use of TensorFloat-32. Specifically, inputs to such ops are rounded from 23 bits of precision to 10 bits of precision. This is unlikely to cause issues in practice for deep learning models. In some cases, TensorFloat-32 is also used for complex64 ops. TensorFloat-32 can be disabled by running tf.config.experimental.enable_tensor_float_32_execution(False).
    • The byte layout for string tensors across the C-API has been updated to match TF Core/C++; i.e., a contiguous array of tensorflow::tstring/TF_TStrings.
    • C-API functions TF_StringDecode, TF_StringEncode, and TF_StringEncodedSize are no longer relevant and have been removed; see core/platform/ctstring.h for string access/modification in C.
    • tensorflow.python, tensorflow.core and tensorflow.compiler modules are now hidden. These modules are not part of TensorFlow public API.
    • tf.raw_ops.Max and tf.raw_ops.Min no longer accept inputs of type tf.complex64 or tf.complex128, because the behavior of these ops is not well defined for complex types.
    • XLA:CPU and XLA:GPU devices are no longer registered by default. Use TF_XLA_FLAGS=--tf_xla_enable_xla_devices if you really need them, but this flag will eventually be removed in subsequent releases.
  • tf.keras:

    • The steps_per_execution argument in model.compile() is no longer experimental; if you were passing experimental_steps_per_execution, rename it to steps_per_execution in your code. This argument controls the number of batches to run during each tf.function call when calling model.fit(). Running multiple batches inside a single tf.function call can greatly improve performance on TPUs or small models with a large Python overhead.
    • A major refactoring of the internals of the Keras Functional API may affect code that is relying on certain internal details:
      • Code that uses isinstance(x, tf.Tensor) instead of tf.is_tensor when checking Keras symbolic inputs/outputs should switch to using tf.is_tensor.
      • Code that is overly dependent on the exact names attached to symbolic tensors (e.g. assumes there will be ":0" at the end of the inputs, treats names as unique identifiers instead of using tensor.ref(), etc.) may break.
      • Code that uses full path for get_concrete_function to trace Keras symbolic inputs directly should switch to building matching tf.TensorSpecs directly and tracing the TensorSpec objects.
      • Code that relies on the exact number and names of the op layers that TensorFlow operations were converted into may have changed.
      • Code that uses tf.map_fn/tf.cond/tf.while_loop/control flow as op layers and happens to work before TF 2.4. These will explicitly be unsupported now. Converting these ops to Functional API op layers was unreliable before TF 2.4, and prone to erroring incomprehensibly or being silently buggy.
      • Code that directly asserts on a Keras symbolic value in cases where ops like tf.rank used to return a static or symbolic value depending on if the input had a fully static shape or not. Now these ops always return symbolic values.
      • Code already susceptible to leaking tensors outside of graphs becomes slightly more likely to do so now.
      • Code that tries directly getting gradients with respect to symbolic Keras inputs/outputs. Use GradientTape on the actual Tensors passed to the already-constructed model instead.
      • Code that requires very tricky shape manipulation via converted op layers in order to work, where the Keras symbolic shape inference proves insufficient.
      • Code that tries manually walking a tf.keras.Model layer by layer and assumes layers only ever have one positional argument. This assumption doesn't hold true before TF 2.4 either, but is more likely to cause issues now.

... (truncated)

Changelog

Sourced from tensorflow's changelog.

Release 2.4.0

Major Features and Improvements

Breaking Changes

  • TF Core:
    • Certain float32 ops run in lower precsion on Ampere based GPUs, including

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
  • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
  • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
  • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
  • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

You can disable automated security fix PRs for this repo from the Security Alerts page.

@dependabot dependabot bot added dependencies Pull requests that update a dependency file Python labels Dec 17, 2020
@seldondev
Copy link
Collaborator

Hi @dependabot[bot]. Thanks for your PR.

I'm waiting for a SeldonIO member to verify that this patch is reasonable to test. If it is, they should reply with /ok-to-test on its own line. Until that is done, I will not automatically test new commits in this PR, but the usual testing commands by org members will still work. Regular contributors should join the org to skip this step.

Once the patch is verified, the new status will be reflected by the ok-to-test label.

I understand the commands that are listed here.

Instructions for interacting with me using PR comments are available here. If you have questions or suggestions related to my behavior, please file an issue against the jenkins-x/lighthouse repository.

@adriangonz
Copy link
Contributor

/ok-to-test
/test integration

@seldondev
Copy link
Collaborator

Thu Dec 17 16:31:49 UTC 2020
The logs for [integration] [2] will show after the pipeline context has finished.
https://github.com/SeldonIO/seldon-core/blob/gh-pages/jenkins-x/logs/SeldonIO/seldon-core/PR-2790/2.log

impatient try
jx get build logs SeldonIO/seldon-core/PR-2790 --build=2

@seldondev
Copy link
Collaborator

Thu Dec 17 16:31:54 UTC 2020
The logs for [pr-build] [1] will show after the pipeline context has finished.
https://github.com/SeldonIO/seldon-core/blob/gh-pages/jenkins-x/logs/SeldonIO/seldon-core/PR-2790/1.log

impatient try
jx get build logs SeldonIO/seldon-core/PR-2790 --build=1

@seldondev
Copy link
Collaborator

Thu Dec 17 16:31:59 UTC 2020
The logs for [lint] [3] will show after the pipeline context has finished.
https://github.com/SeldonIO/seldon-core/blob/gh-pages/jenkins-x/logs/SeldonIO/seldon-core/PR-2790/3.log

impatient try
jx get build logs SeldonIO/seldon-core/PR-2790 --build=3

@adriangonz
Copy link
Contributor

/test notebooks

@seldondev
Copy link
Collaborator

Thu Dec 17 16:34:21 UTC 2020
The logs for [notebooks] [4] will show after the pipeline context has finished.
https://github.com/SeldonIO/seldon-core/blob/gh-pages/jenkins-x/logs/SeldonIO/seldon-core/PR-2790/4.log

impatient try
jx get build logs SeldonIO/seldon-core/PR-2790 --build=4

@adriangonz
Copy link
Contributor

/test notebooks

@seldondev
Copy link
Collaborator

Fri Dec 18 09:19:37 UTC 2020
The logs for [notebooks] [5] will show after the pipeline context has finished.
https://github.com/SeldonIO/seldon-core/blob/gh-pages/jenkins-x/logs/SeldonIO/seldon-core/PR-2790/5.log

impatient try
jx get build logs SeldonIO/seldon-core/PR-2790 --build=5

@adriangonz
Copy link
Contributor

The explainer_examples notebook seems to be the only one using tensorflow. I've tested it locally and it seems to work fine with TF 2.4.

The notebooks failure above may have been a flaky test. I'll kick them off again.

/test notebooks

@seldondev
Copy link
Collaborator

Fri Dec 18 12:00:29 UTC 2020
The logs for [notebooks] [6] will show after the pipeline context has finished.
https://github.com/SeldonIO/seldon-core/blob/gh-pages/jenkins-x/logs/SeldonIO/seldon-core/PR-2790/6.log

impatient try
jx get build logs SeldonIO/seldon-core/PR-2790 --build=6

@dependabot dependabot bot force-pushed the dependabot/pip/testing/scripts/tensorflow-2.4.0 branch from de1d02d to 54e57b1 Compare December 18, 2020 12:02
@seldondev
Copy link
Collaborator

Fri Dec 18 12:05:49 UTC 2020
The logs for [lint] [8] will show after the pipeline context has finished.
https://github.com/SeldonIO/seldon-core/blob/gh-pages/jenkins-x/logs/SeldonIO/seldon-core/PR-2790/8.log

impatient try
jx get build logs SeldonIO/seldon-core/PR-2790 --build=8

@seldondev
Copy link
Collaborator

Fri Dec 18 12:05:53 UTC 2020
The logs for [pr-build] [7] will show after the pipeline context has finished.
https://github.com/SeldonIO/seldon-core/blob/gh-pages/jenkins-x/logs/SeldonIO/seldon-core/PR-2790/7.log

impatient try
jx get build logs SeldonIO/seldon-core/PR-2790 --build=7

@adriangonz
Copy link
Contributor

Not sure why it's not showing, but notebooks and integration tests have passed now.

@adriangonz
Copy link
Contributor

/approve

@seldondev
Copy link
Collaborator

[APPROVALNOTIFIER] This PR is APPROVED

This pull-request has been approved by: adriangonz

The full list of commands accepted by this bot can be found here.

The pull request process is described here

Needs approval from an approver in each of these files:

Approvers can indicate their approval by writing /approve in a comment
Approvers can cancel approval by writing /approve cancel in a comment

@seldondev seldondev merged commit cee8786 into master Dec 18, 2020
@dependabot dependabot bot deleted the dependabot/pip/testing/scripts/tensorflow-2.4.0 branch December 18, 2020 16:26
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
approved dependencies Pull requests that update a dependency file ok-to-test Python size/XS
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants