Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Tempo Prepackaged Server #3193

Merged
merged 5 commits into from
May 17, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,7 @@ Documentation Index
MLflow Server <servers/mlflow.md>
SKLearn Server <servers/sklearn.md>
Triton Inference Server <servers/triton.md>
Tempo Server <servers/tempo.md>
Tensorflow Serving <servers/tensorflow.md>
XGBoost Server <servers/xgboost.md>

Expand Down
8 changes: 0 additions & 8 deletions doc/source/python/api/seldon_core.rst
Original file line number Diff line number Diff line change
Expand Up @@ -97,14 +97,6 @@ seldon\_core.mlmd\_utils module
:undoc-members:
:show-inheritance:

seldon\_core.persistence module
-------------------------------

.. automodule:: seldon_core.persistence
:members:
:undoc-members:
:show-inheritance:

seldon\_core.seldon\_client module
----------------------------------

Expand Down
42 changes: 42 additions & 0 deletions doc/source/servers/tempo.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# Tempo Server

[Tempo](https://github.com/SeldonIO/tempo) is a MLOps python SDK that allows packaging custom python servers and orchestration of multiple models from python. The Tempo python SDK allows packaging of the custom code as a conda-pack environment tar ball and Cloudpickle artifacts. It has a Seldon Core runtime which allows Tempo artifacts to be run under Seldon Core.

For more details see the [Tempo documentation](https://tempo.readthedocs.io/en/latest/).

An example Tempo model yaml for Seldon Core is shown below:

```python
apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
annotations:
seldon.io/tempo-description: ''
seldon.io/tempo-model: '{"model_details": {"name": "numpyro-divorce", "local_folder":
"/home/clive/work/mlops/fork-tempo/docs/examples/custom-model/artifacts", "uri":
"s3://tempo/divorce", "platform": "custom", "inputs": {"args": [{"ty": "numpy.ndarray",
"name": "marriage"}, {"ty": "numpy.ndarray", "name": "age"}]}, "outputs": {"args":
[{"ty": "numpy.ndarray", "name": null}]}, "description": ""}, "protocol": "tempo.kfserving.protocol.KFServingV2Protocol",
"runtime_options": {"runtime": "tempo.seldon.SeldonKubernetesRuntime", "docker_options":
{"defaultRuntime": "tempo.seldon.SeldonDockerRuntime"}, "k8s_options": {"replicas":
1, "minReplicas": null, "maxReplicas": null, "authSecretName": "minio-secret",
"serviceAccountName": null, "defaultRuntime": "tempo.seldon.SeldonKubernetesRuntime",
"namespace": "production"}, "ingress_options": {"ingress": "tempo.ingress.istio.IstioIngress",
"ssl": false, "verify_ssl": true}}}'
labels:
seldon.io/tempo: 'true'
name: numpyro-divorce
namespace: production
spec:
predictors:
- graph:
envSecretRefName: minio-secret
implementation: TEMPO_SERVER
modelUri: s3://tempo/divorce
name: numpyro-divorce
serviceAccountName: tempo-pipeline
type: MODEL
name: default
replicas: 1
protocol: kfserving
```
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ metadata:
annotations:
cert-manager.io/inject-ca-from: '{{ include "seldon.namespace" . }}/seldon-serving-cert'
controller-gen.kubebuilder.io/version: v0.4.1
creationTimestamp: null
labels:
app: seldon
app.kubernetes.io/instance: '{{ .Release.Name }}'
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ metadata:
annotations:
cert-manager.io/inject-ca-from: '{{ include "seldon.namespace" . }}/seldon-serving-cert'
controller-gen.kubebuilder.io/version: v0.4.1
creationTimestamp: null
axsaucedo marked this conversation as resolved.
Show resolved Hide resolved
name: seldondeployments.machinelearning.seldon.io
spec:
group: machinelearning.seldon.io
Expand Down
1 change: 0 additions & 1 deletion helm-charts/seldon-core-operator/templates/webhook.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@ kind: ValidatingWebhookConfiguration
metadata:
annotations:
cert-manager.io/inject-ca-from: '{{ include "seldon.namespace" . }}/seldon-serving-cert'
creationTimestamp: null
labels:
app: seldon
app.kubernetes.io/instance: '{{ .Release.Name }}'
Expand Down
9 changes: 7 additions & 2 deletions helm-charts/seldon-core-operator/values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,7 @@ predictor_servers:
defaultImageVersion: "1.8.0-dev"
image: seldonio/sklearnserver
kfserving:
defaultImageVersion: "0.1.1"
defaultImageVersion: "0.3.2"
image: seldonio/mlserver
TENSORFLOW_SERVER:
protocols:
Expand All @@ -134,13 +134,18 @@ predictor_servers:
defaultImageVersion: "1.8.0-dev"
image: seldonio/xgboostserver
kfserving:
defaultImageVersion: "0.1.1"
defaultImageVersion: "0.3.2"
image: seldonio/mlserver
TRITON_SERVER:
protocols:
kfserving:
defaultImageVersion: "20.08-py3"
image: nvcr.io/nvidia/tritonserver
TEMPO_SERVER:
protocols:
kfserving:
defaultImageVersion: "0.3.2"
image: seldonio/mlserver

# ## Other
# You can choose the crds to not be installed if you already installed them
Expand Down
2 changes: 1 addition & 1 deletion notebooks/resources/iris-sklearn-v2.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ spec:
- graph:
children: []
implementation: SKLEARN_SERVER
modelUri: gs://seldon-models/sklearn/iris
modelUri: gs://seldon-models/sklearn/iris-0.23.2/lr_model
name: classifier
name: default
replicas: 1
Loading