Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update e2e tests and add Combiner to python wrappers #343

Merged
merged 6 commits into from
Dec 15, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions examples/combiners/mnist_combiner/MnistCombiner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
import logging
logger = logging.getLogger(__name__)

class MnistCombiner(object):
def __init__(self, metrics_ok=True):
print("MNIST Combiner Init called")

def aggregate(self, Xs, features_names):
print("MNIST Combiner aggregate called")
logger.info(Xs)
return (Xs[0]+Xs[1])/2.0

4 changes: 4 additions & 0 deletions examples/combiners/mnist_combiner/environment_grpc
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
MODEL_NAME=MnistCombiner
API_TYPE=GRPC
SERVICE_TYPE=COMBINER
PERSISTENCE=0
4 changes: 4 additions & 0 deletions examples/combiners/mnist_combiner/environment_rest
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
MODEL_NAME=MnistCombiner
API_TYPE=REST
SERVICE_TYPE=COMBINER
PERSISTENCE=0
331 changes: 331 additions & 0 deletions examples/combiners/mnist_combiner/mnist_combiner.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,331 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MNIST Combiner\n",
"\n",
"Combines two models, an SKLearn model and a Tensorflow model for MNIST. The combination does a simple average of the two models."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34mimport\u001b[39;49;00m \u001b[04m\u001b[36mlogging\u001b[39;49;00m\r\n",
"logger = logging.getLogger(\u001b[31m__name__\u001b[39;49;00m)\r\n",
"\r\n",
"\u001b[34mclass\u001b[39;49;00m \u001b[04m\u001b[32mMnistCombiner\u001b[39;49;00m(\u001b[36mobject\u001b[39;49;00m):\r\n",
" \u001b[34mdef\u001b[39;49;00m \u001b[32m__init__\u001b[39;49;00m(\u001b[36mself\u001b[39;49;00m, metrics_ok=\u001b[36mTrue\u001b[39;49;00m):\r\n",
" \u001b[34mprint\u001b[39;49;00m(\u001b[33m\"\u001b[39;49;00m\u001b[33mMNIST Combiner Init called\u001b[39;49;00m\u001b[33m\"\u001b[39;49;00m)\r\n",
"\r\n",
" \u001b[34mdef\u001b[39;49;00m \u001b[32maggregate\u001b[39;49;00m(\u001b[36mself\u001b[39;49;00m, Xs, features_names):\r\n",
" \u001b[34mprint\u001b[39;49;00m(\u001b[33m\"\u001b[39;49;00m\u001b[33mMNIST Combiner aggregate called\u001b[39;49;00m\u001b[33m\"\u001b[39;49;00m)\r\n",
" logger.info(Xs)\r\n",
" \u001b[34mreturn\u001b[39;49;00m (Xs[\u001b[34m0\u001b[39;49;00m]+Xs[\u001b[34m1\u001b[39;49;00m])/\u001b[34m2.0\u001b[39;49;00m\r\n"
]
}
],
"source": [
"!pygmentize MnistCombiner.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Start Minikube"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!minikube start --memory 4096 --feature-gates=CustomResourceValidation=true --extra-config=apiserver.Authorization.Mode=RBAC"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!kubectl create clusterrolebinding kube-system-cluster-admin --clusterrole=cluster-admin --serviceaccount=kube-system:default"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!kubectl config set-context $(kubectl config current-context) --namespace=seldon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build Combiner image"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---> Installing application source...\n",
"Build completed successfully\n"
]
}
],
"source": [
"!eval $(minikube docker-env) && s2i build -E environment_rest . seldonio/seldon-core-s2i-python36:0.4-SNAPSHOT seldonio/mnistcombiner_rest:0.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Helm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!kubectl -n kube-system create sa tiller\n",
"!kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller\n",
"!helm init --service-account tiller"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!kubectl rollout status deploy/tiller-deploy -n kube-system"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Seldon Core"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!kubectl create namespace seldon"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!helm install ../../../helm-charts/seldon-core-crd --name seldon-core-crd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!helm install ../../../helm-charts/seldon-core --name seldon-core --namespace seldon \\\n",
" --set ambassador.enabled=true"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!kubectl rollout status deploy/seldon-core-seldon-cluster-manager\n",
"!kubectl rollout status deploy/seldon-core-seldon-apiserver\n",
"!kubectl rollout status deploy/seldon-core-ambassador"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To send requests to Ambassador ingress in another terminal run:\n",
" \n",
"```\n",
"kubectl port-forward $(kubectl get pods -n seldon -l service=ambassador -o jsonpath='{.items[0].metadata.name}') -n seldon 8002:8080\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From /home/clive/work/seldon-core/fork-seldon-core/examples/combiners/mnist_combiner/utils.py:57: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Please use alternatives such as official/mnist/dataset.py from tensorflow/models.\n",
"WARNING:tensorflow:From /home/clive/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Please write your own downloading logic.\n",
"WARNING:tensorflow:From /home/clive/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Please use tf.data to implement this functionality.\n",
"Extracting MNIST_data/train-images-idx3-ubyte.gz\n",
"WARNING:tensorflow:From /home/clive/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Please use tf.data to implement this functionality.\n",
"Extracting MNIST_data/train-labels-idx1-ubyte.gz\n",
"WARNING:tensorflow:From /home/clive/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Please use tf.one_hot on tensors.\n",
"Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n",
"Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n",
"WARNING:tensorflow:From /home/clive/anaconda3/lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Please use alternatives such as official/mnist/dataset.py from tensorflow/models.\n"
]
}
],
"source": [
"%matplotlib inline\n",
"import utils\n",
"from visualizer import get_graph\n",
"mnist = utils.download_mnist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"get_graph(\"mnist_combiner.json\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pygmentize mnist_combiner.json"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"seldondeployment.machinelearning.seldon.io/mnistcombo created\r\n"
]
}
],
"source": [
"!kubectl apply -f mnist_combiner.json"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"deployment \"mnistcombo-mnistcombo-3715bc4\" successfully rolled out\r\n"
]
}
],
"source": [
"!kubectl rollout status deploy/mnistcombo-mnistcombo-3715bc4"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADmNJREFUeJzt3W+MVGWWx/HfsYUQgShI4yLgNhpYQQiMVsgmrhuNYRRD/PMCM0QnjE7seQEJJr7wT9QxJmsI7jBO4jIJs4MwCeNAMsNqjKwYskGJk5HSAIoIY0yv9EKgDZqh9cVIc/ZFX0yLXU8VVbfqVnO+n4RU1T33qXss+XGr6qmqx9xdAOK5qOgGABSD8ANBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUIQfCOriVh5s0qRJ3tXV1cpDAqH09PTo888/t1r2bSj8Zna7pF9J6pD0n+6+OrV/V1eXyuVyI4cEkFAqlWret+6n/WbWIek/JC2WNEfSMjObU+/9AWitRl7zL5T0ibt/6u5/l/QHSXfl0xaAZmsk/FMlHRlyuzfb9h1m1m1mZTMr9/X1NXA4AHlqJPzDvanwve8Hu/t6dy+5e6mzs7OBwwHIUyPh75U0fcjtaZKONtYOgFZpJPx7JM00sxlmNlrSjyS9mk9bAJqt7qk+dz9tZislvaHBqb4N7n4gt84ANFVD8/zu/rqk13PqBUAL8fFeICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4Jq6RLdqE9/f3+y/vXXX1esTZ48Oe92zov79xZx+tbp06eTY/fu3Zusr1u3LlnfuHFjxdqpU6eSY8eNG5esXwg48wNBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUA3N85tZj6RTkgYknXb3Uh5N4bsefPDBZH379u0VaytXrkyOve666+rq6aw33ngjWT9y5EjF2q5duxo69ujRo5P1VatWVayNGTOmoWNfCPL4kM8t7v55DvcDoIV42g8E1Wj4XdIOM3vPzLrzaAhAazT6tP9Gdz9qZpMlvWlmH7v7W0N3yP5R6Jakq666qsHDAchLQ2d+dz+aXZ6QtE3SwmH2We/uJXcvdXZ2NnI4ADmqO/xmNtbMxp+9LumHkj7MqzEAzdXI0/4rJG0zs7P383t3/+9cugLQdHWH390/lTQ/x15QQbX57NT3/VevXp13O+clNZ/e1dWVHHvLLbck648//niyPnPmzGQ9Oqb6gKAIPxAU4QeCIvxAUIQfCIrwA0Hx090jwA033JCsb968uWLtnnvuSY6dPz89W3vppZcm67Nnz07WZ82aVbE2Y8aM5Fg0F2d+ICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiKef4R4O2336577JNPPpmsX3/99XXfN0Y2zvxAUIQfCIrwA0ERfiAowg8ERfiBoAg/EBTz/G1gYGAgWe/t7U3WR40aVVcNsXHmB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgqs7zm9kGSUsknXD3udm2iZK2SOqS1CPpXnf/onltXth2796drO/ZsydZv/rqqyvW5s2bV1dPuPDVcubfKOn2c7Y9Jmmnu8+UtDO7DWAEqRp+d39L0slzNt8laVN2fZOku3PuC0CT1fua/wp3PyZJ2eXk/FoC0ApNf8PPzLrNrGxm5b6+vmYfDkCN6g3/cTObIknZ5YlKO7r7encvuXups7OzzsMByFu94X9V0vLs+nJJr+TTDoBWqRp+M3tZ0p8l/ZOZ9ZrZTyWtlrTIzP4qaVF2G8AIUnWe392XVSjdmnMvYe3fv7+h8bfeOjL/V3z22WfJ+pVXXpmsX3wxP0fRCD7hBwRF+IGgCD8QFOEHgiL8QFCEHwiKuZI2sHPnzobGHz58uGLtueeea+i+jx49mqyfPHnud76+69ChQxVrBw4cSI5dsWJFsr5mzZpkvaOjI1mPjjM/EBThB4Ii/EBQhB8IivADQRF+ICjCDwTFPH8LfPXVV8n6vn37Grr/Xbt21VVrhVmzZlWsjR8/Pjl27dq1yfrUqVOT9VWrVlWs8RkAzvxAWIQfCIrwA0ERfiAowg8ERfiBoAg/EBTz/C1Q7TvxPT09TTt2ap5dku68885kffr06cn6okWLkvVrrrmmYi31OwSSdMcddyTrjzzySLI+bty4irXu7u7k2Ag48wNBEX4gKMIPBEX4gaAIPxAU4QeCIvxAUFXn+c1sg6Qlkk64+9xs2zOSHpLUl+32hLu/3qwmR7pyudzQ+JtuuilZf/755yvW5s+fnxw7ZsyYunrKw9y5c5P1Bx54IFl/9tlnk/XU5wDuu+++5NixY8cm6xeCWs78GyXdPsz2X7r7guwPwQdGmKrhd/e3JKWXZQEw4jTymn+lme03sw1mNiG3jgC0RL3h/7WkayQtkHRM0i8q7Whm3WZWNrNyX19fpd0AtFhd4Xf34+4+4O5nJP1G0sLEvuvdveTupc7Oznr7BJCzusJvZlOG3LxH0of5tAOgVWqZ6ntZ0s2SJplZr6SfS7rZzBZIckk9kn7WxB4BNIG5e8sOViqVvNE575FoYGAgWX/nnXeS9Tlz5iTrl19++Xn3NBIcOXIkWa/2uPT391esbd26NTl26dKlyXq7KpVKKpfLVsu+fMIPCIrwA0ERfiAowg8ERfiBoAg/EBQ/3d0C1ZaDrvaV3aiq/Wz4tGnTkvWPP/64Yq3asukRcOYHgiL8QFCEHwiK8ANBEX4gKMIPBEX4gaCY58eIddlllxXdwojGmR8IivADQRF+ICjCDwRF+IGgCD8QFOEHgmKeH23rxRdfTNbffffduu978uTJdY+9UHDmB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgqs7zm9l0Sb+T9A+Szkha7+6/MrOJkrZI6pLUI+led/+iea0Wa/fu3RVrDz30UHLshAkTkvXXXnstWZ84cWKyPlJt2bIlWX/qqaeS9TNnziTrjz76aMXa4sWLk2MjqOXMf1rSI+4+W9I/S1phZnMkPSZpp7vPlLQzuw1ghKgafnc/5u7vZ9dPSTooaaqkuyRtynbbJOnuZjUJIH/n9ZrfzLok/UDSXyRd4e7HpMF/ICTxeUlgBKk5/GY2TtIfJT3s7n87j3HdZlY2s3JfX189PQJogprCb2ajNBj8ze7+p2zzcTObktWnSDox3Fh3X+/uJXcvdXZ25tEzgBxUDb+ZmaTfSjro7muHlF6VtDy7vlzSK/m3B6BZavlK742SfizpAzPbm217QtJqSVvN7KeSPpO0tDkttof+/v6KtdRS0LWoNu300ksvJetz5sxp6PiNqPbfvm3btoq1NWvWJMd++eWXyfry5cuT9aeffrpibfCcFlvV8Lv7bkmVHqlb820HQKvwCT8gKMIPBEX4gaAIPxAU4QeCIvxAUPx0d41uu+22irWPPvooOfbhhx9O1nfs2JGsL1iwIFnv6OhI1ptpYGAgWf/mm2/qvu9q8/jr1q1L1i+55JK6jx0BZ34gKMIPBEX4gaAIPxAU4QeCIvxAUIQfCIp5/hqlvv89e/bs5Njt27cn64cPH07W9+3bl6wfOnSoYu2FF15Ijv3ii8Z+bX3evHnJ+rXXXluxdv/99yfHLlmyJFm/6CLOXY3g0QOCIvxAUIQfCIrwA0ERfiAowg8ERfiBoJjnb4Fq89GpufBa6imp365HbJz5gaAIPxAU4QeCIvxAUIQfCIrwA0ERfiCoquE3s+lm9j9mdtDMDpjZqmz7M2b2f2a2N/tzR/PbBZCXWj7kc1rSI+7+vpmNl/Semb2Z1X7p7v/evPYANEvV8Lv7MUnHsuunzOygpKnNbgxAc53Xa34z65L0A0l/yTatNLP9ZrbBzCZUGNNtZmUzK/f19TXULID81Bx+Mxsn6Y+SHnb3v0n6taRrJC3Q4DODXww3zt3Xu3vJ3UudnZ05tAwgDzWF38xGaTD4m939T5Lk7sfdfcDdz0j6jaSFzWsTQN5qebffJP1W0kF3Xztk+5Qhu90j6cP82wPQLLW823+jpB9L+sDM9mbbnpC0zMwWSHJJPZJ+1pQOATRFLe/275Y03I/Wv55/OwBahU/4AUERfiAowg8ERfiBoAg/EBThB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgCD8QFOEHgjJ3b93BzPok/e+QTZMkfd6yBs5Pu/bWrn1J9FavPHv7R3ev6ffyWhr+7x3crOzupcIaSGjX3tq1L4ne6lVUbzztB4Ii/EBQRYd/fcHHT2nX3tq1L4ne6lVIb4W+5gdQnKLP/AAKUkj4zex2MztkZp+Y2WNF9FCJmfWY2QfZysPlgnvZYGYnzOzDIdsmmtmbZvbX7HLYZdIK6q0tVm5OrCxd6GPXbitet/xpv5l1SDosaZGkXkl7JC1z949a2kgFZtYjqeTuhc8Jm9m/SuqX9Dt3n5ttWyPppLuvzv7hnODuj7ZJb89I6i965eZsQZkpQ1eWlnS3pJ+owMcu0de9KuBxK+LMv1DSJ+7+qbv/XdIfJN1VQB9tz93fknTynM13SdqUXd+kwb88LVeht7bg7sfc/f3s+ilJZ1eWLvSxS/RViCLCP1XSkSG3e9VeS367pB1m9p6ZdRfdzDCuyJZNP7t8+uSC+zlX1ZWbW+mclaXb5rGrZ8XrvBUR/uFW/2mnKYcb3f16SYslrcie3qI2Na3c3CrDrCzdFupd8TpvRYS/V9L0IbenSTpaQB/Dcvej2eUJSdvUfqsPHz+7SGp2eaLgfr7VTis3D7eytNrgsWunFa+LCP8eSTPNbIaZjZb0I0mvFtDH95jZ2OyNGJnZWEk/VPutPvyqpOXZ9eWSXimwl+9ol5WbK60srYIfu3Zb8bqQD/lkUxkvSOqQtMHd/63lTQzDzK7W4NleGlzE9PdF9mZmL0u6WYPf+jou6eeS/kvSVklXSfpM0lJ3b/kbbxV6u1mDT12/Xbn57GvsFvf2L5LelvSBpDPZ5ic0+Pq6sMcu0dcyFfC48Qk/ICg+4QcERfiBoAg/EBThB4Ii/EBQhB8IivADQRF+IKj/B237/BEUH07gAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7efe76439c88>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'meta': {'puid': 'h4tuqh36rdmu3bcdlcpc0r3mke', 'tags': {}, 'routing': {'combiner': -1}, 'requestPath': {'tfmodel': 'seldonio/deep-mnist:0.1', 'skmodel': 'seldonio/sk-mnist:0.1', 'combiner': 'seldonio/mnistcombiner_rest:0.1'}, 'metrics': []}, 'data': {'names': ['class:0', 'class:1', 'class:2', 'class:3', 'class:4', 'class:5', 'class:6', 'class:7', 'class:8', 'class:9'], 'ndarray': [[0.01777702378264318, 2.8567853860295145e-06, 0.017218996949183444, 0.0812305503214399, 0.0010864619398489594, 0.8603562653064728, 0.00041601501288823783, 2.683608215647837e-07, 0.02169143408536911, 0.00022013898706063628]]}}\n"
]
}
],
"source": [
"utils.predict_rest_mnist(mnist,\"mnistcombo\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading