Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add test for tensorflow prepackaged Seldon protocol with resource requests #3928

Merged
merged 1 commit into from
Feb 14, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 112 additions & 1 deletion operator/controllers/seldondeployment_prepackaged_servers_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,6 @@ var _ = Describe("Create a prepacked sklearn server", func() {
})

var _ = Describe("Create a prepacked tfserving server for Seldon protocol and REST", func() {
const timeout = time.Second * 30
const interval = time.Second * 1
const name = "pp2"
const sdepName = "prepack2"
Expand Down Expand Up @@ -178,6 +177,118 @@ var _ = Describe("Create a prepacked tfserving server for Seldon protocol and RE

})

var _ = Describe("Create a prepacked tfserving server for Seldon protocol and REST with resource requests", func() {
const interval = time.Second * 1
const name = "pp2"
const sdepName = "prepack2b"
By("Creating a resource")
It("should create a resource with defaults", func() {
Expect(k8sClient).NotTo(BeNil())
cpuValue := "2"
cpuRequest, err := resource.ParseQuantity(cpuValue)
Expect(err).To(BeNil())
modelName := "classifier"
var modelType = machinelearningv1.MODEL
var impl = machinelearningv1.PredictiveUnitImplementation(constants.PrePackedServerTensorflow)
key := types.NamespacedName{
Name: sdepName,
Namespace: "default",
}
instance := &machinelearningv1.SeldonDeployment{
ObjectMeta: metav1.ObjectMeta{
Name: key.Name,
Namespace: key.Namespace,
},
Spec: machinelearningv1.SeldonDeploymentSpec{
Name: name,
Predictors: []machinelearningv1.PredictorSpec{
{
Name: name,
Graph: machinelearningv1.PredictiveUnit{
Name: modelName,
Type: &modelType,
Implementation: &impl,
Endpoint: &machinelearningv1.Endpoint{Type: machinelearningv1.REST},
},
ComponentSpecs: []*machinelearningv1.SeldonPodSpec{
{
Spec: corev1.PodSpec{
Containers: []corev1.Container{
{
Name: modelName,
Resources: corev1.ResourceRequirements{
Requests: corev1.ResourceList{corev1.ResourceCPU: cpuRequest},
},
},
{
Name: "tfserving",
Resources: corev1.ResourceRequirements{
Requests: corev1.ResourceList{corev1.ResourceCPU: cpuRequest},
},
},
},
},
},
},
},
},
},
}

configMapName := types.NamespacedName{Name: "seldon-config",
Namespace: "seldon-system"}

configResult := &corev1.ConfigMap{}
const timeout = time.Second * 30
Eventually(func() error { return k8sClient.Get(context.TODO(), configMapName, configResult) }, timeout).
Should(Succeed())

// Run Defaulter
instance.Default()

Expect(k8sClient.Create(context.Background(), instance)).Should(Succeed())
//time.Sleep(time.Second * 5)

fetched := &machinelearningv1.SeldonDeployment{}
Eventually(func() error {
err := k8sClient.Get(context.Background(), key, fetched)
return err
}, timeout, interval).Should(BeNil())
Expect(fetched.Name).Should(Equal(sdepName))

sPodSpec, idx := utils.GetSeldonPodSpecForPredictiveUnit(&instance.Spec.Predictors[0], instance.Spec.Predictors[0].Graph.Name)
depName := machinelearningv1.GetDeploymentName(instance, instance.Spec.Predictors[0], sPodSpec, idx)
depKey := types.NamespacedName{
Name: depName,
Namespace: "default",
}
depFetched := &appsv1.Deployment{}
Eventually(func() error {
err := k8sClient.Get(context.Background(), depKey, depFetched)
return err
}, timeout, interval).Should(BeNil())
Expect(len(depFetched.Spec.Template.Spec.Containers)).Should(Equal(3))
for _, c := range depFetched.Spec.Template.Spec.Containers {
if c.Name == constants.TFServingContainerName {
for _, arg := range c.Args {
if strings.Index(arg, constants.TfServingArgPort) == 0 {
Expect(arg).To(Equal(constants.TfServingArgPort + strconv.Itoa(constants.TfServingGrpcPort)))
}
if strings.Index(arg, constants.TfServingArgRestPort) == 0 {
Expect(arg).To(Equal(constants.TfServingArgRestPort + strconv.Itoa(constants.TfServingRestPort)))
}
}
Expect(c.Resources.Requests.Cpu().String()).To(Equal(cpuValue))
} else if c.Name == modelName {
Expect(c.Resources.Requests.Cpu().String()).To(Equal(cpuValue))
}
}

Expect(k8sClient.Delete(context.Background(), instance)).Should(Succeed())
})

})

var _ = Describe("Create a prepacked tfserving server for tensorflow protocol and REST", func() {
const timeout = time.Second * 30
const interval = time.Second * 1
Expand Down