-
Notifications
You must be signed in to change notification settings - Fork 52
Examples and Recipes
If you want more detailed examples than given on this page, please see https://github.com/SethMMorton/natsort/tree/main/tests.
- Basic Usage
- Sort Version Numbers
- Sort OS-Generated Paths
- Locale-Aware Sorting (Human Sorting)
- Controlling Case When Sorting
- Customizing Float Definition
- Using a Custom Sorting Key
- Generating a Natsort Key
- Sorting Multiple Lists According to a Single List
- Returning Results in Reverse Order
- Sorting Bytes
- Sorting a Pandas DataFrame
In the most basic use case, simply import natsorted() and use it as you would sorted():
>>> a = ['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in']
>>> sorted(a)
['1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '2 ft 7 in', '7 ft 6 in']
>>> from natsort import natsorted, ns
>>> natsorted(a)
['1 ft 5 in', '2 ft 7 in', '2 ft 11 in', '7 ft 6 in', '10 ft 2 in']
As of natsort version >= 4.0.0, natsorted() will work for
well-behaved version numbers, like MAJOR.MINOR.PATCH
.
By default, if you wish to sort versions that are not as simple as
MAJOR.MINOR.PATCH
(or similar), you may not get the results you expect:
>>> a = ['1.2', '1.2rc1', '1.2beta2', '1.2beta1', '1.2alpha', '1.2.1', '1.1', '1.3']
>>> natsorted(a)
['1.1', '1.2', '1.2.1', '1.2alpha', '1.2beta1', '1.2beta2', '1.2rc1', '1.3']
To make the '1.2' pre-releases come before '1.2.1', you need to use the following recipe:
>>> natsorted(a, key=lambda x: x.replace('.', '~'))
['1.1', '1.2', '1.2alpha', '1.2beta1', '1.2beta2', '1.2rc1', '1.2.1', '1.3']
If you also want '1.2' after all the alpha, beta, and rc candidates, you can modify the above recipe:
>>> natsorted(a, key=lambda x: x.replace('.', '~')+'z')
['1.1', '1.2alpha', '1.2beta1', '1.2beta2', '1.2rc1', '1.2', '1.2.1', '1.3']
Please see this issue to see why this works.
If you know you are using a versioning scheme that follows a well-defined format for which there is third-party module support, you should use those modules to assist in sorting. Some examples might be PEP 440 or SemVer.
If we are being honest, using these methods to parse a version means you don't need to use natsort - you should probably just use sorted() directly. Here's an example with SemVer:
>>> from semver import VersionInfo
>>> a = ['3.4.5-pre.1', '3.4.5', '3.4.5-pre.2+build.4']
>>> sorted(a, key=VersionInfo.parse)
['3.4.5-pre.1', '3.4.5-pre.2+build.4', '3.4.5']
In some cases when sorting file paths with OS-Generated names, the default
natsort algorithm may not be sufficient. In cases like these,
you may need to use the ns.PATH
option:
>>> a = ['./folder/file (1).txt',
... './folder/file.txt',
... './folder (1)/file.txt',
... './folder (10)/file.txt']
>>> natsorted(a)
['./folder (1)/file.txt', './folder (10)/file.txt', './folder/file (1).txt', './folder/file.txt']
>>> natsorted(a, alg=ns.PATH)
['./folder/file.txt', './folder/file (1).txt', './folder (1)/file.txt', './folder (10)/file.txt']
NOTE: Please read Possible Issues with natsort.humansorted or ns.LOCALE
before using ns.LOCALE
, humansorted(), or index_humansorted().
You can instruct natsort to use locale-aware sorting with the
ns.LOCALE
option. In addition to making this understand non-ASCII
characters, it will also properly interpret non-'.' decimal separators
and also properly order case. It may be more convenient to just use
the humansorted() function:
>>> from natsort import humansorted
>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
'en_US.UTF-8'
>>> a = ['Apple', 'corn', 'Corn', 'Banana', 'apple', 'banana']
>>> natsorted(a, alg=ns.LOCALE)
['apple', 'Apple', 'banana', 'Banana', 'corn', 'Corn']
>>> humansorted(a)
['apple', 'Apple', 'banana', 'Banana', 'corn', 'Corn']
You may find that if you do not explicitly set the locale your results may not be as you expect... I have found that it depends on the system you are on. If you use PyICU then you should not need to do this.
For non-numbers, by default natsort used ordinal sorting (i.e. it sorts by the character's value in the ASCII table). For example:
>>> a = ['Apple', 'corn', 'Corn', 'Banana', 'apple', 'banana']
>>> natsorted(a)
['Apple', 'Banana', 'Corn', 'apple', 'banana', 'corn']
There are times when you wish to ignore the case when sorting,
you can easily do this with the ns.IGNORECASE
option:
>>> natsorted(a, alg=ns.IGNORECASE)
['Apple', 'apple', 'Banana', 'banana', 'corn', 'Corn']
Note that's since Python's sorting is stable, the order of equivalent elements after lowering the case is the same order they appear in the original list.
Upper-case letters appear first in the ASCII table, but many natural
sorting methods place lower-case first. To do this, use
ns.LOWERCASEFIRST
:
>>> natsorted(a, alg=ns.LOWERCASEFIRST)
['apple', 'banana', 'corn', 'Apple', 'Banana', 'Corn']
It may be undesirable to have the upper-case letters grouped together
and the lower-case letters grouped together; most would expect all
"a"s to bet together regardless of case, and all "b"s, and so on. To
achieve this, use ns.GROUPLETTERS
:
>>> natsorted(a, alg=ns.GROUPLETTERS)
['Apple', 'apple', 'Banana', 'banana', 'Corn', 'corn']
You might combine this with ns.LOWERCASEFIRST
to get what most
would expect to be "natural" sorting:
>>> natsorted(a, alg=ns.G | ns.LF)
['apple', 'Apple', 'banana', 'Banana', 'corn', 'Corn']
You can make natsorted() search for any float that would be
a valid Python float literal, such as 5, 0.4, -4.78, +4.2E-34, etc.
using the ns.FLOAT
key. You can disable the exponential component
of the number with ns.NOEXP
.
>>> a = ['a50', 'a51.', 'a+50.4', 'a5.034e1', 'a+50.300']
>>> natsorted(a, alg=ns.FLOAT)
['a50', 'a5.034e1', 'a51.', 'a+50.300', 'a+50.4']
>>> natsorted(a, alg=ns.FLOAT | ns.SIGNED)
['a50', 'a+50.300', 'a5.034e1', 'a+50.4', 'a51.']
>>> natsorted(a, alg=ns.FLOAT | ns.SIGNED | ns.NOEXP)
['a5.034e1', 'a50', 'a+50.300', 'a+50.4', 'a51.']
For convenience, the ns.REAL
option is provided which is a shortcut
for ns.FLOAT | ns.SIGNED
and can be used to sort on real numbers.
This can be easily accessed with the realsorted() convenience
function. Please note that the behavior of the realsorted() function
was the default behavior of natsorted() for natsort
version < 4.0.0:
>>> natsorted(a, alg=ns.REAL)
['a50', 'a+50.300', 'a5.034e1', 'a+50.4', 'a51.']
>>> from natsort import realsorted
>>> realsorted(a)
['a50', 'a+50.300', 'a5.034e1', 'a+50.4', 'a51.']
Like the built-in sorted() function, natsorted() can accept a custom sort key so that:
>>> from operator import attrgetter, itemgetter
>>> a = [['a', 'num4'], ['b', 'num8'], ['c', 'num2']]
>>> natsorted(a, key=itemgetter(1))
[['c', 'num2'], ['a', 'num4'], ['b', 'num8']]
>>> class Foo:
... def __init__(self, bar):
... self.bar = bar
... def __repr__(self):
... return "Foo('{}')".format(self.bar)
>>> b = [Foo('num3'), Foo('num5'), Foo('num2')]
>>> natsorted(b, key=attrgetter('bar'))
[Foo('num2'), Foo('num3'), Foo('num5')]
This example demonstrates a general strategy for handling custom numeric data, which is to use a regular expression to transform that into standard decimal notation in a key function and then sort that.
>>> import re
>>>
>>> import natsort
>>> # Regex to identify hex numbers in a string
>>> # This can be customized to fit your specific needs
>>> hex_finder = re.compile(
... r"""
... (?<!\w) # The number cannot be preceded by an alphanumeric character
... ( # Begin the capturing group
... 0[xX] # Must start with a 0x
... [0-9a-fA-F]+ # The hex number itself
... ) # End the capturing group
... (?!\w) # The number cannot be followed by an alphanumeric character
... """
... flags=re.VERBOSE
... )
>>>
>>> def hex_normalizer(matchobj):
... """Convert a hex number into a decimal number"""
... return str(int(matchobj.group(1), base=16))
>>>
>>> def hex_key(x):
... return hex_finder.sub(hex_normalizer, x)
>>>
>>> data = ['0xca', 'BABE', "104"]
>>> natsort.natsorted(data)
['0xca', '104', 'BABE']
>>> natsort.natsorted(data, key=hex_key)
['104', '0xca', 'BABE']
natsort does not come with any pre-built mechanism to sort units, but you can write your own key to do this. Below, I will demonstrate sorting imperial lengths (e.g. feet an inches), but of course you can extend this to any set of units you need. This example is based on code from this issue, and uses the function natsort.numeric_regex_chooser() to build a regular expression that will parse numbers in the same manner as natsort itself.
>>> import re
>>> import natsort
>>>
>>> # Define how each unit will be transformed
>>> conversion_mapping = {
... "in": 1,
... "inch": 1,
... "inches": 1,
... "ft": 12,
... "feet": 12,
... "foot": 12,
... }
>>>
>>> # This regular expression searches for numbers and units
>>> all_units = "|".join(conversion_mapping.keys())
>>> float_re = natsort.numeric_regex_chooser(natsort.FLOAT | natsort.SIGNED)
>>> unit_finder = re.compile(r"({})\s*({})".format(float_re, all_units), re.IGNORECASE)
>>>
>>> def unit_replacer(matchobj):
... """
... Given a regex match object, return a replacement string where units are modified
... """
... number = matchobj.group(1)
... unit = matchobj.group(2)
... new_number = float(number) * conversion_mapping[unit]
... return "{} in".format(new_number)
...
>>> # Demo time!
>>> data = ['1 ft', '5 in', '10 ft', '2 in']
>>> [unit_finder.sub(unit_replacer, x) for x in data]
['12.0 in', '5.0 in', '120.0 in', '2.0 in']
>>>
>>> natsort.natsorted(data, key=lambda x: unit_finder.sub(unit_replacer, x))
['2 in', '5 in', '1 ft', '10 ft']
If you need to sort a list in-place, you cannot use natsorted(); you need to pass a key to the list.sort() method. The function natsort_keygen() is a convenient way to generate these keys for you:
>>> from natsort import natsort_keygen
>>> a = ['a50', 'a51.', 'a50.4', 'a5.034e1', 'a50.300']
>>> natsort_key = natsort_keygen(alg=ns.FLOAT)
>>> a.sort(key=natsort_key)
>>> a
['a50', 'a50.300', 'a5.034e1', 'a50.4', 'a51.']
natsort_keygen() has the same API as natsorted() (minus the reverse option).
Sometimes you have multiple lists, and you want to sort one of those lists and reorder the other lists according to how the first was sorted. To achieve this you could use the index_natsorted() in combination with the convenience function order_by_index():
>>> from natsort import index_natsorted, order_by_index
>>> a = ['a2', 'a9', 'a1', 'a4', 'a10']
>>> b = [4, 5, 6, 7, 8]
>>> c = ['hi', 'lo', 'ah', 'do', 'up']
>>> index = index_natsorted(a)
>>> order_by_index(a, index)
['a1', 'a2', 'a4', 'a9', 'a10']
>>> order_by_index(b, index)
[6, 4, 7, 5, 8]
>>> order_by_index(c, index)
['ah', 'hi', 'do', 'lo', 'up']
Just like the sorted() built-in function, you can supply the
reverse
option to return the results in reverse order:
>>> a = ['a2', 'a9', 'a1', 'a4', 'a10']
>>> natsorted(a, reverse=True)
['a10', 'a9', 'a4', 'a2', 'a1']
Python is rather strict about comparing strings and bytes, and this
can make it difficult to deal with collections of both. Because of the
challenge of guessing which encoding should be used to decode a bytes
array to a string, natsort does not try to guess and automatically
convert for you; in fact, the official stance of natsort is to
not support sorting bytes. Instead, some decoding convenience functions
have been provided to you (see Help With Bytes) that allow you to
provide a codec for decoding bytes through the key
argument that
will allow natsort to convert byte arrays to strings for sorting;
these functions know not to raise an error if the input is not a byte
array, so you can use the key on any arbitrary collection of data.
>>> from natsort import as_ascii
>>> a = [b'a', 14.0, 'b']
>>> # natsorted(a) would raise a TypeError (bytes() < str())
>>> natsorted(a, key=as_ascii) == [14.0, b'a', 'b']
True
Additionally, regular expressions cannot be run on byte arrays, making it so that natsort cannot parse them for numbers. As a result, if you run natsort on a list of bytes, you will get results that are like Python's default sorting behavior. Of course, you can use the decoding functions to solve this:
>>> from natsort import as_utf8
>>> a = [b'a56', b'a5', b'a6', b'a40']
>>> natsorted(a) # doctest: +SKIP
[b'a40', b'a5', b'a56', b'a6']
>>> natsorted(a, key=as_utf8) == [b'a5', b'a6', b'a40', b'a56']
True
If you need a codec different from ASCII or UTF-8, you can use decoder() to generate a custom key:
>>> from natsort import decoder
>>> a = [b'a56', b'a5', b'a6', b'a40']
>>> natsorted(a, key=decoder('latin1')) == [b'a5', b'a6', b'a40', b'a56']
True
Starting from Pandas version 1.1.0, the sorting methods accept a "key" argument, so you can simply pass natsort_keygen() to the sorting methods and sort:
import pandas as pd from natsort import natsort_keygen s = pd.Series(['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in']) s.sort_values(key=natsort_keygen()) # 1 1 ft 5 in # 0 2 ft 7 in # 3 2 ft 11 in # 4 7 ft 6 in # 2 10 ft 2 in # dtype: object
(If you have a DataFrame instead of a Series you'll need to use the by keyword argument to specify the columns to send to the key.)
To sort an index it is recommended to use a different method:
import pandas as pd from natsort import natsorted df = pd.DataFrame( { 'a': ['a5', 'a1', 'a10', 'a2', 'a12'], 'b': ['b1', 'b1', 'b2', 'b2', 'b1'] }, index=['0hr', '128hr', '72hr', '48hr', '96hr'], ) df.reindex(index=natsorted(df.index)) # a b # 0hr a5 b1 # 48hr a2 b2 # 72hr a10 b2 # 96hr a12 b1 # 128hr a1 b1
We use this method because the output of natsort_keygen() is not intepreted properly by the sort_index() method of a DataFrame (see https://github.com/SethMMorton/natsort/issues/172).
Here are a couple of other methods that return equivalent results:
df.loc[natsorted(df.index)] # a b # 0hr a5 b1 # 48hr a2 b2 # 72hr a10 b2 # 96hr a12 b1 # 128hr a1 b1 df.iloc[index_natsorted(df.index)] # a b # 0hr a5 b1 # 48hr a2 b2 # 72hr a10 b2 # 96hr a12 b1 # 128hr a1 b1
Check out this answer on StackOverflow for a longer discussion on this.