-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit a873842
Showing
22 changed files
with
1,299 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Wed Jul 8 09:43:57 2020 | ||
@author: user | ||
""" | ||
|
||
import numpy as np | ||
import scipy.io | ||
from utils import saveplot,load_data | ||
|
||
def ComputeCosineScore(x_test): | ||
|
||
D2 = scipy.io.loadmat('test_ivecs.mat') | ||
D2['Results']['ivectors'][0,0]=np.transpose(x_test) | ||
scipy.io.savemat('test_ivecs_filtered.mat', D2) | ||
|
||
|
||
l = [0 , 0.0001 , .001 , .01 , 0.1 , 0.2,0.3,0.4,0.5,0.75,1] | ||
dic=load_data('test_ivecs_filtered.npz' ) | ||
scores_cosine=saveplot(dic , l , 'test-all.scp','ALL' , 'Ivector_raw' , 'Cosine' , 'log.txt','\t',1) | ||
return scores_cosine |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Wed Jul 8 10:14:04 2020 | ||
@author: user | ||
""" | ||
import numpy as np | ||
|
||
def cosinedis(v1,v2): | ||
dot_product = np.dot(v1, v2) | ||
norm_a = np.linalg.norm(v1) | ||
norm_b = np.linalg.norm(v2) | ||
return dot_product / (norm_a * norm_b) | ||
|
||
|
||
|
||
def ComputeCosineScore_OnTrainSet(FusionTrails_positive,FusionTrails_negative): | ||
y_pred=[] | ||
data=FusionTrails_positive | ||
for i in range(len(data)): | ||
file1 =data[i][0:150] | ||
file2= data[i][150:300] | ||
res = cosinedis(file1,file2) | ||
y_pred.append(res) | ||
scores_cosine_positive=y_pred | ||
|
||
y_pred=[] | ||
data=FusionTrails_negative | ||
for i in range(len(data)): | ||
file1 =data[i][0:150] | ||
file2= data[i][150:300] | ||
res = cosinedis(file1,file2) | ||
y_pred.append(res) | ||
scores_cosine_negative=y_pred | ||
|
||
return scores_cosine_positive,scores_cosine_negative |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Wed Jul 8 12:30:31 2020 | ||
@author: user | ||
""" | ||
from sklearn.mixture import GaussianMixture as Gaussian | ||
import numpy as np | ||
|
||
def ComputeGuassianScores_OnTrainSet(FusionTrails_positive,FusionTrails_negative): | ||
|
||
NegativePairs=np.load('NegativePairs.npy') | ||
PositivePairs=np.load('PositivePairs.npy') | ||
|
||
#8: Train Gaussian models | ||
GaussainPositive=Gaussian(n_components=1,covariance_type='full') | ||
GaussainNegative=Gaussian(n_components=1,covariance_type='full') | ||
GaussainPositive.fit(PositivePairs) | ||
GaussainNegative.fit(NegativePairs) | ||
cov_P=GaussainPositive.covariances_ | ||
mean_P=GaussainPositive.means_ | ||
cov_N=GaussainNegative.covariances_ | ||
mean_N=GaussainNegative.means_ | ||
|
||
|
||
cov_N = np.reshape(cov_N, (300,300)) | ||
cov_P = np.reshape(cov_P, (300,300)) | ||
InvCovP=np.linalg.inv(cov_P) | ||
InvCovN=np.linalg.inv(cov_N) | ||
#------------------------------------------- | ||
#9: Compute Scores | ||
x_test=FusionTrails_positive | ||
NumTest=len(x_test) | ||
scores=[] | ||
for i in range(NumTest): | ||
A1=x_test[i][0:150] | ||
A2=x_test[i][150:300] | ||
Pairs=np.append(A1,A2) | ||
Pairs = np.reshape(Pairs, (1,300)) | ||
s=-1*(Pairs-mean_P).dot(InvCovP).dot(np.transpose(Pairs-mean_P))+(Pairs-mean_N).dot(InvCovN).dot(np.transpose(Pairs-mean_N)) | ||
scores.append(s[0][0]) | ||
scores_guassian_positive=scores | ||
|
||
x_test=FusionTrails_negative | ||
NumTest=len(x_test) | ||
scores=[] | ||
for i in range(NumTest): | ||
A1=x_test[i][0:150] | ||
A2=x_test[i][150:300] | ||
Pairs=np.append(A1,A2) | ||
Pairs = np.reshape(Pairs, (1,300)) | ||
s=-1*(Pairs-mean_P).dot(InvCovP).dot(np.transpose(Pairs-mean_P))+(Pairs-mean_N).dot(InvCovN).dot(np.transpose(Pairs-mean_N)) | ||
scores.append(s[0][0]) | ||
scores_guassian_negative=scores | ||
|
||
np.save('InvCovP',InvCovP) | ||
np.save('InvCovN',InvCovN) | ||
np.save('mean_P',mean_P) | ||
np.save('mean_N',mean_N) | ||
return scores_guassian_positive,scores_guassian_negative |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
|
||
import numpy as np | ||
import matlab.engine | ||
eng = matlab.engine.start_matlab() | ||
|
||
|
||
|
||
|
||
def ComputeMopldaScores_OnTrainSet(FusionTrails_positive,FusionTrails_negative): | ||
|
||
|
||
x_test=FusionTrails_positive | ||
NumTest=len(x_test) | ||
scores=[] | ||
for i in range(NumTest): | ||
print('positive trail',i) | ||
A1=x_test[i][0:250] | ||
A2=x_test[i][250:500] | ||
A1matlab = matlab.double(A1.tolist()) | ||
A2matlab = matlab.double(A2.tolist()) | ||
s= eng.score_moplda_trials(A1matlab,A2matlab,nargout=1) | ||
scores.append(s) | ||
scores_Moplda_positive=scores | ||
|
||
|
||
x_test=FusionTrails_negative | ||
NumTest=len(x_test) | ||
scores=[] | ||
for i in range(NumTest): | ||
print('negative trail',i) | ||
A1=x_test[i][0:250] | ||
A2=x_test[i][250:500] | ||
A1matlab = matlab.double(A1.tolist()) | ||
A2matlab = matlab.double(A2.tolist()) | ||
s = eng.score_moplda_trials(A1matlab,A2matlab,nargout=1) | ||
scores.append(s) | ||
scores_Moplda_negative=scores | ||
|
||
eng.quit() | ||
return scores_Moplda_positive,scores_Moplda_negative |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Sat Jul 18 08:48:43 2020 | ||
@author: user | ||
""" | ||
|
||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Wed Jul 8 12:30:31 2020 | ||
@author: user | ||
""" | ||
import numpy as np | ||
import matlab.engine | ||
eng = matlab.engine.start_matlab() | ||
|
||
|
||
|
||
|
||
def ComputePldaScores_OnTrainSet(FusionTrails_positive,FusionTrails_negative): | ||
|
||
|
||
x_test=FusionTrails_positive | ||
NumTest=len(x_test) | ||
scores=[] | ||
for i in range(NumTest): | ||
print('positive trail',i) | ||
A1=x_test[i][0:150] | ||
A2=x_test[i][150:300] | ||
A1matlab = matlab.double(A1.tolist()) | ||
A2matlab = matlab.double(A2.tolist()) | ||
s= eng.score_gplda_trials(A1matlab,A2matlab,nargout=1) | ||
scores.append(s) | ||
scores_Plda_positive=scores | ||
|
||
|
||
x_test=FusionTrails_negative | ||
NumTest=len(x_test) | ||
scores=[] | ||
for i in range(NumTest): | ||
print('negative trail',i) | ||
A1=x_test[i][0:150] | ||
A2=x_test[i][150:300] | ||
A1matlab = matlab.double(A1.tolist()) | ||
A2matlab = matlab.double(A2.tolist()) | ||
s = eng.score_gplda_trials(A1matlab,A2matlab,nargout=1) | ||
scores.append(s) | ||
scores_Plda_negative=scores | ||
|
||
eng.quit() | ||
return scores_Plda_positive,scores_Plda_negative |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Wed Jul 1 10:06:47 2020 | ||
@author: user | ||
""" | ||
|
||
|
||
#--------------------------------------------------------------------------- | ||
import pandas as pd | ||
import numpy as np | ||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LdaSciKit | ||
import scipy.io | ||
#from sklearn.LpLda import LinearDiscriminantAnalysis as LpLdaSciKit | ||
from sklearn.mixture import GaussianMixture as Gaussian | ||
import itertools, random | ||
#--------------------------------------------------------------------------- | ||
|
||
|
||
#--------------------------------------------------------------------------- | ||
#usage: alist = select(10,2) | ||
def ListOfPositivePairs(size, pair_size): | ||
g =itertools.combinations(range(size),pair_size) | ||
alist = list(g) | ||
random.seed(4) | ||
random.shuffle(alist) | ||
return alist | ||
|
||
def ListOfNegativePairs(list1, list2): | ||
alist = list(itertools.product(list1, list2)) | ||
random.seed(4) | ||
random.shuffle(alist) | ||
return alist | ||
#--------------------------------------------------------------------------- | ||
|
||
|
||
|
||
|
||
|
||
def ExtractFusionTrails(x_train,label_train,dim_lda): | ||
TrailDim=2*dim_lda | ||
#------------------------------------ | ||
#positive trails: | ||
vectors=x_train | ||
labels=label_train | ||
unique_labels = np.unique(label_train) | ||
PositivePairs=np.empty((1,TrailDim)) | ||
Pairs=np.empty((1,TrailDim)) | ||
for label in unique_labels: | ||
vecs = [vectors[i] for i in range(len(vectors)) if labels[i] == label] | ||
print(label, len(vecs)) | ||
a=len(vecs) | ||
alist = ListOfPositivePairs(a,2) | ||
|
||
if len(alist)>0: | ||
L=25 | ||
if len(alist)<L: | ||
L=len(alist) | ||
for x in range(L): | ||
A1=vecs[alist[x][0]] | ||
A2=vecs[alist[x][1]] | ||
Pairs=np.append(A1,A2) | ||
Pairs = np.reshape(Pairs, (1,TrailDim)) | ||
PositivePairs=np.append(PositivePairs,Pairs,axis=0) | ||
|
||
PositivePairs=np.delete(PositivePairs,0,0) | ||
FusionTrails_positive=PositivePairs | ||
#np.save('FusionTrails_positive',FusionTrails_positive) | ||
#PositivePairs=np.load('PositivePairs.npy') | ||
#----------------------------------- | ||
# Negative trails: | ||
NegativePairs=np.empty((1,TrailDim)) | ||
Pairs=np.empty((1,TrailDim)) | ||
for label in unique_labels: | ||
print(label) | ||
vecs = [vectors[i] for i in range(len(vectors)) if labels[i] == label] | ||
vecs_not = [vectors[i] for i in range(len(vectors)) if labels[i] != label] | ||
|
||
#alist = ListOfNegativePairs( list(range(len(vecs))) , list(range(len(vecs_not))) #time consuming | ||
|
||
A=list(range(len(vecs_not))) | ||
random.seed(4) | ||
random.shuffle(A) | ||
AA=A[0:100] | ||
alist = ListOfNegativePairs( list(range(len(vecs))) , AA ) | ||
|
||
if len(alist)>0: | ||
L=20 | ||
if len(alist)<L: | ||
L=len(alist) | ||
for x in range(L): | ||
A1=vecs[alist[x][0]] | ||
A2=vecs_not[alist[x][1]] | ||
Pairs=np.append(A1,A2) | ||
Pairs = np.reshape(Pairs, (1,TrailDim)) | ||
NegativePairs=np.append(NegativePairs,Pairs,axis=0) | ||
NegativePairs=np.delete(NegativePairs,0,0) | ||
FusionTrails_negative=NegativePairs | ||
#np.save('FusionTrails_negative',FusionTrails_negative) | ||
#NegativePairs=np.load('NegativePairs.npy') | ||
|
||
return FusionTrails_negative , FusionTrails_positive |
Oops, something went wrong.