Skip to content

This repository contains the notebooks and code for the 2023 Data Science Challenge (DSC) at Lawrence Livermore National Laboratory (LLNL).

License

Notifications You must be signed in to change notification settings

Shamima2021/cardiac_challenge

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Science Challenge 2023 - Cardiac Electrophysiology

This repository contains the notebooks and code for the 2023 Data Science Challenge (DSC) at Lawrence Livermore National Laboratory (LLNL).

Description

The electrocardiogram (ECG) provides a non-invasive and cost-effective tool for the diagnosis of heart conditions. However, the standard 12-lead ECG is inadequate for mapping out the electrical activity of the heart in sufficient detail for many clinical applications (e.g., identifying the origins of an arrhythmia). In order to construct a more detailed map of the heart, current techniques require not only ECG readings from dozens of locations on a patient’s body, but also patient-specific anatomical models built from expensive medical imaging procedures. For this Data Science Challenge problem, we consider an alternative data-driven approach to reconstructing electroanatomical maps of the heart at clinically relevant resolutions, which combines input from the standard 12-lead electrocardiogram (ECG) with advanced machine learning techniques. We begin with the clearly-defined task of identifying heart conditions from ECG profiles and then consider a range of more open-ended challenges, including the reconstruction of a complete spatio-temporal activation map of the human heart.

Contents

Roadmap

  • If you are unfamiliar with the field of machine learning, have a look at the tutorials folder, which contains a set of notebooks to get you started with machine learning.
  • The challenge is divided into 4 tasks, each of which is described in detail in the corresponding notebook.
  • Start by reading the task_#_getting_started.ipynb notebooks for each task, to get familiar with the data and the task.

Task 1 : Heartbeat Classification

Get familiar working with ECG data by using the ECG Heartbeat Categorization Dataset to perform binary classification for healthy heartbeat vs. irregular heartbeat

Start by reading the task_1_getting_started.ipynb notebook.

Task 2 : Irregular Heartbeat Classification

Diagnosing an irregular heartbeat by using the ECG Heartbeat Categorization Dataset to perform multiclass classification to diagnose the irregular heartbeats.

Start by reading the task_2_getting_started.ipynb notebook.

Task 3 : Activation Map Reconstruction from ECG

Sequence-to-vector prediction using the Dataset of Simulated Intracardiac Transmembrane Voltage Recordings and ECG Signals to perform activation map reconstruction (i.e. transform a sequence of length 12x500 to 75x1 using a neural network)

Start by reading the task_3_getting_started.ipynb notebook.

Task 4 : Transmembrane Potential Reconstruction from ECG

Sequence-to-sequence prediction using the Dataset of Simulated Intracardiac Transmembrane Voltage Recordings and ECG Signals to perform transmembrane potential reconstruction (i.e. transform a sequence of length 12x500 to 75x500 using a neural network)

Start by reading the task_4_getting_started.ipynb notebook.

Additional Information

Working with the ECG Heartbeat Categorization Dataset

Download dataset
  • Download the dataset from the ECG Heartbeat Categorization Dataset
  • Unzip the archive.zip file
  • Rename the folder archive as ecg_dataset and place it in the root of the git repository

Working with the Dataset of Simulated Intracardiac Transmembrane Voltage Recordings and ECG Signals

Download dataset
  1. Download the dataset from the Dataset of Simulated Intracardiac Transmembrane Voltage Recordings and ECG Signals
    • You will need to download all the components of the dataset one by one
  2. Unzip the dataset

Note : For convenience, we have included a bash script to perform the above steps. To use the script, run the following command from the root of the repository:

source download_intracardiac_dataset.sh
Further details

For further details, navigate to the intracardiac_dataset folder and read the README.md file.

  • Look in documentation/documentation.pdf for a detailed description of the dataset, including the simulation process
  • Look at the files documentation/dataset_description.png and documentation/dataset_description.csv for details on each simulation study
  • Jupyter Notebook: Inspect the data using notebooks/dataset_inspect.ipynb
  • Mathematica Notebook: Inspect the data using notebooks/dataset_inspect.nb
  • The license documents can be found in license

Additional Resources

License

Data Science Challenge 2023 is distributed under the terms of the MIT license. All new contributions must be made under this license.

See LICENSE, and NOTICE for details.

SPDX-License-Identifier: MIT

LLNL-CODE-849487

About

This repository contains the notebooks and code for the 2023 Data Science Challenge (DSC) at Lawrence Livermore National Laboratory (LLNL).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.6%
  • Other 0.4%