Skip to content

(ICLR) Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving

License

Notifications You must be signed in to change notification settings

Sherlock-hh/Pseudo_Lidar_V2

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving

This paper has been accpeted by International Conference on Learning Representations (ICLR) 2020.

Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving

by Yurong You*, Yan Wang* Wei-Lun Chao*, Divyansh Garg, Bharath Hariharan, Mark Campbell and Kilian Q. Weinberger

Figure

Citation

@inproceedings{you2020pseudo,
  title={Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving},
  author={You, Yurong and Wang, Yan and Chao, Wei-Lun and Garg, Divyansh and Pleiss, Geoff and Hariharan, Bharath and Campbell, Mark and Weinberger, Kilian Q},
  booktitle={ICLR},
  year={2020}
}

Abstract

Detecting objects such as cars and pedestrians in 3D plays an indispensable role in autonomous driving. Existing approaches largely rely on expensive LiDAR sensors for accurate depth information. While recently pseudo-LiDAR has been introduced as a promising alternative, at a much lower cost based solely on stereo images, there is still a notable performance gap. In this paper we provide substantial advances to the pseudo-LiDAR framework through improvements in stereo depth estimation. Concretely, we adapt the stereo network architecture and loss function to be more aligned with accurate depth estimation of faraway objects --- currently the primary weakness of pseudo-LiDAR. Further, we explore the idea to leverage cheaper but extremely sparse LiDAR sensors, which alone provide insufficient information for 3D detection, to de-bias our depth estimation. We propose a depth-propagation algorithm, guided by the initial depth estimates, to diffuse these few exact measurements across the entire depth map. We show on the KITTI object detection benchmark that our combined approach yields substantial improvements in depth estimation and stereo-based 3D object detection --- outperforming the previous state-of-the-art detection accuracy for faraway objects by 40%.

Contents

Requirements

  1. Python 3.7
  2. Pytorch 1.0.0
  3. CUDA
  4. pip install -r ./requirements.txt
  5. SceneFlow
  6. KITTI

Pretrained Models

Datasets

You have to download the SceneFlow and KITTI datasets. The structures of the datasets are shown in below.

SceneFlow Dataset Structure

SceneFlow
    | monkaa
        | frames_cleanpass
        | disparity
    | driving
        | frames_cleanpass
        | disparity
    | flyingthings3d
        | frames_cleanpass 
        | disparity

KITTI Object Detection Dataset Structure

KITTI
    | training
        | calib
        | image_2
        | image_3
        | velodyne
    | testing
        | calib
        | image_2
        | image_3

Generate soft-links of SceneFlow Datasets. The results will be saved in ./sceneflow folder. Please change to fakepath path-to-SceneFlow to the SceneFlow dataset location before running the script. #为啥sceneflow就要创建软链接?为啥

python scneflow.py --path path-to-SceneFlow --force

Convert the KITTI velodyne ground truths to depth maps. Please change to fakepath path-to-KITTI to the SceneFlow dataset location before running the script. #把kitti的真实点云转为深度图,在运行前修改下面命令中的kitti路径。为啥kitti不用soft—links?

python ./src/preprocess/generate_depth_map.py --data_path path-to-KITTI/ --split_file ./split/trainval.txt

Training and Inference

We have provided all pretrained models Pretrained Models. If you only want to generate the predictions, you can directly go to step 3. #没错我准备这么干 The default setting requires four gpus to train. You can use smaller batch sizes which are btrain and bval, if you don't have enough gpus.

1 Train SDNet from Scratch on SceneFlow Dataset

python ./src/main.py -c src/configs/sdn_sceneflow.config

#第一步略 The checkpoints are saved in ./results/sdn_sceneflow/. #这是sceneflow训练后的chekpoints文件,也就是ckpt吧

2 Train SDNet on KITTI Dataset

python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --pretrain ./results/sdn_sceneflow/checkpoint.pth.tar --dataset  path-to-KITTI/training/

Before running, please change the fakepath path-to-KITTI/ to the correct one. --pretrain is the path to the pretrained model on SceneFlow. The training results are saved in ./results/sdn_kitti_train_set. #为啥训练kitti还得用sceneflow的预训练模型? If you are working on evaluating SDNet on KITTI testing set, you might want to train SDNet on training+validation sets. The training results will be saved in ./results/sdn_kitti_trainval_set. #如果你是用kitti testing set 来评估SDNet,你可能需要training+validation sets上训练SDNet。

python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --pretrain ./results/sdn_sceneflow/checkpoint.pth.tar \
    --dataset  path-to-KITTI/training/ --split_train ./split/trainval.txt \
    --save_path ./results/sdn_kitti_trainval_set

3 Generate Predictions

python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --pretrain ./results/sdn_sceneflow/checkpoint.pth.tar \
    --dataset  path-to-KITTI/training/ --split_train ./split/trainval.txt \
    --save_path ./results/sdn_kitti_trainval_set

#这一步生成预测结果,也就是传说中可以用预训练模型训练不用自己训练直接跳过1,2步来测试的第三步

3 Generate Predictions为啥这里又有一个Generate Predictions

Please change the fakepath path-to-KITTI. Moreover, if you use the our provided checkpoint, please modify the value of --resume to the checkpoint location. #修改脚本中的路径,重点!!!!如果你使用的是我们提供好的预训练模型,请匹配--resume中的chekpoint的路径

  • a. Using the model trained on KITTI training set, and generating predictions on training + validation sets. #使用基于kitti的训练集的训练模型,生成训练和验证集的预测结果。
python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume ./results/sdn_kitti_train_set/checkpoint.pth.tar --datapath  path-to-KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval

The results will be saved in ./results/sdn_kitti_train_set/depth_maps_trainval/. #结果将被保存在保存路径

  • b. Using the model trained on KITTI training + validation set, and generating predictions on training + validation and testing sets. You will use them when you want to submit your results to the leaderboard. #使用基于kitti训练和验证集的训练模型,生成训练,验证,和测试集的预测结果,这个是用来提交结果到kitti的官网排名用的。
# training + validation sets
python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume ./results/sdn_kitti_trainval_set/checkpoint.pth.tar --datapath  path-to-KITTI/training/ \
Please change the fakepath `path-to-KITTI`. Moreover, if you use the our provided checkpoint, please modify the value of `--resume` to the checkpoint location. 
#如果使用作者提供的预训练模型,修改--resume的chekpoint文件的路径
* a. Using the model trained on KITTI training set, and generating predictions on training + validation sets.
```bash
python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume ./results/sdn_kitti_train_set/checkpoint.pth.tar --datapath  path-to-KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval

The results will be saved in ./results/sdn_kitti_train_set/depth_maps_trainval/. #嗯?重复了

  • b. Using the model trained on KITTI training + validation set, and generating predictions on training + validation and testing sets. You will use them when you want to submit your results to the leaderboard.
# training + validation sets
python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume ./results/sdn_kitti_trainval_set/checkpoint.pth.tar --datapath  path-to-KITTI/training/ \
    --data_list=./split/trainval.txt --generate_depth_map --data_tag trainval

The results will be saved in ./results/sdn_kitti_trainval_set/depth_maps_trainval/.

# testing sets测试集
python ./src/main.py -c src/configs/sdn_kitti_train.config \
    --resume ./results/sdn_kitti_trainval_set/checkpoint.pth.tar --datapath  path-to-KITTI/testing/ \
    --data_list=./split/test.txt --generate_depth_map --data_tag test

The results will be saved in ./results/sdn_kitti_trainval_set/depth_maps_test/.

4 Convert predictions to Pseudo-LiDAR and Planes将预测结果转为伪雷达和地面

Here, I provide an example. You have to change the paths accordingly. In this example, it will load calibrations from calib_dir, and load depth maps from depth_dir. The results will be saved in save_dir. #在这里我提供了一个例子,你对路径进行相应的修改,在这个例子中,它将会从calib_dir中提取校准坐标,以及从depth_dir中提取深度图,结果将保存在save_dir。

# Convert depth maps to Pseudo-Lidar Point Clouds#形成伪雷达点云
python ./src/preprocess/generate_lidar_from_depth.py --calib_dir  path-to-KITTI/training/calib \
    --depth_dir ./results/sdn_kitti_train_set/depth_maps/trainval/  \
    --save_dir  ./results/sdn_kitti_train_set/pseudo_lidar_trainval/
# Predict Ground Planes生成地平面
python ./src/preprocess/kitti_process_RANSAC.py --calib_dir  path-to-KITTI/training/calib \
    --lidar_dir ./results/ssdn_kitti_train_set/pseudo_lidar_trainval/  \
    --planes_dir  ./results/sdn_kitti_train_set/pseudo_lidar_trainval_planes/

5 Sparsify Pseudo-LiDAR稀疏化伪雷达

Some 3D Object Detection models, such as PointRCNN, requires sparse point clouds. We provide an script to downsample the dense Pseudo-LiDAR clouds. #一些3D检测模型,比如PointRCNN,要求稀疏化点云,我们提供了脚本用于对密集的伪雷达点云进行稀疏化。

# Sparsify Pseudo-LiDAR
python ./src/preprocess/kitti_sparsify.py --pl_path  ./results/ssdn_kitti_train_set/pseudo_lidar_trainval/  \
    --sparse_pl_path  ./results/sdn_kitti_train_set/pseudo_lidar_trainval_sparse/

6 Graph-based Depth Correction 什么基于图的深度矫正

Please check the code and README.md in ./gdc for more details.

7 Train 3D Detection with Pseudo-LiDAR基于伪雷达的3D检测

Please check the Pseudo-LiDAR repo for more details https://github.com/mileyan/pseudo_lidar.

Results

We have uploaded the Pseudo-LiDAR clouds trained on only KITTI training set (not validation data). You can download them from google drive.

Questions

Please feel free email us if you have any questions.

Yan Wang yw763@cornell.edu Yurong You yy785@cornell.edu Wei-Lun Chao weilunchao760414@gmail.com

About

(ICLR) Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%