Skip to content

Commit

Permalink
670 class
Browse files Browse the repository at this point in the history
  • Loading branch information
SichangHe committed Nov 13, 2024
1 parent 6e30791 commit 24c8a63
Showing 1 changed file with 35 additions and 4 deletions.
39 changes: 35 additions & 4 deletions src/notes/class_notes/csci670.md
Original file line number Diff line number Diff line change
Expand Up @@ -193,9 +193,9 @@ given $G=(V,E,d)$ w/ metric $d$, $k$, want $(S_1,\cdots,S_k)$ s.t.
- doing consistently better than $\log n$ of optimum is NP-hard
- greedy cost

$$
c_G(i_t)=\frac{w_{i_t}}{|S_{i_t}\cap U_t|} ≤ H(|S_{j_t}|)w_{j_t}
$$
$$
c_G(i_t)=\frac{w_{i_t}}{|S_{i_t}\cap U_t|} ≤ H(|S_{j_t}|)w_{j_t}
$$

- [harmonic
series](../mathematics/sequence_series.html#harmonic-series)
Expand Down Expand Up @@ -651,7 +651,8 @@ is both in convex hull of $\{x_i|a_i>0\}$ and $\{x_i|a_i<0\}$

### Markov chain

- Markovian matrix $M$: [stochastic matrix](stats303.html#markov-chain)
- Markovian matrix $M=D^{-1}A$:
[stochastic matrix](stats303.html#markov-chain)
- doubly-stochastic matrix: both row & column sum to one
- spectral radius: largest dilation by vector

Expand All @@ -673,3 +674,33 @@ $⇒ (M^T)^t\frac{\vec 1}{n}$: start random and walk $t$ round

- significant PageRank problem: want all page w/ PageRank $≥\epsilon$
- approximately find page w/ PageRank $≥\frac{\epsilon}{2}$

## spectral graph theory

- simplest: undirected graph
- spectral graph partitioning: heuristics

### Laplacian matrix $L=D-A$

- $D$: degree matrix, diagonal, $D_{ii}$ is degree of node $i$
- $A$: adjacency matrix
- $L\vec 1=\vec 0,\vec 1L=\vec 0$
- additive decomposition: can add edge one at a time and sum the $L$,
$L=∑_{i,j\in E}L_{ij}$
- $\vec x^TL\vec x=∑_{(i,j)\in E}(x_i-x_j)^2$
- ⇒ $L$ is positive semi-definite
- eigenvalue $\lambda_1=0$
- Fiedler: $\lambda_2=0 \Leftrightarrow$ graph connected

### min cut

- convention: $|S|≤|\bar S|$
- conductance $\frac{|cut(S,\bar S)|}{|S|}$
- want min conductance → NP-hard
- algorithm
1. find Fiedler vector $\vec u_2$ (corresponding to $\lambda_2$)
1. sort $\vec u_2$ entries ascending $z_{\pi(i)}$
- $z_{\pi(1)}≤\cdots≤0≤z_{\pi(n)}$
1. $V:=\{\pi(i)\}$
- only need to check cut between $\pi(i)$ and $\pi(i+1)$
- dimensionality reduction $2^n → n-1$

0 comments on commit 24c8a63

Please sign in to comment.