Skip to content

Commit

Permalink
303 class 6.2
Browse files Browse the repository at this point in the history
  • Loading branch information
SichangHe committed Apr 23, 2024
1 parent a54ad90 commit 5a45445
Showing 1 changed file with 28 additions and 3 deletions.
31 changes: 28 additions & 3 deletions src/notes/class_notes/stats303.md
Original file line number Diff line number Diff line change
Expand Up @@ -386,10 +386,35 @@ $$
$$
P \left(
\sup_{f\in\mathcal F}|R(f)-R_n(f)|>ε
\right)≤2\mathcal N(\mathcal F,sn)\exp\left(\frac{-nε^2}{4}\right)
\right)≤2\mathcal N(\mathcal F,2n)\exp\left(\frac{-nε^2}{4}\right)
$$
- proof:
$$
P \left(
\sup_{f\in\mathcal F}|R(f)-R_n(f)|>ε
\right)≤P \left(
\sup_{f\in\mathcal F}|R(f)-R_n(f)|≥\frac{ε}{2}
\right)\\
≤2P \left(
\sup_{f\in\mathcal F}|R_n(f)-R_n'(f)|≥\frac{ε}{2}
\right)\\
$$
where $R_n'(f)$ is empirical risk of another $n$ sample (ghost sample)

$⇒ ∃c ≤ \mathcal N(\mathcal F,2n)$ class of $f$ for sample & ghost sample
- problem: hard to compute shattering coefficient

### shattering coefficient
### shattering coefficient $\mathcal N(\mathcal F,n)$

maximum number of $\mathcal F_{X_1,…,X_n}$,
function we can get by restricting $\mathcal F$ to $X_1,…,X_n$

$\mathcal N(\mathcal F,n)$
## (Vapnik-Chervonenkis dimension) VC dimension

maximum $n$ s.t. $\mathcal F$ can classify $X_1…,X_n$ completely correctly

- for function class $\mathcal F$ w/ VC dimension $d$
$$
\mathcal N(\mathcal F,n)<{n\choose d}
$$
- ERM is consistence $⇔$ VC dimension finite

0 comments on commit 5a45445

Please sign in to comment.