Skip to content

Commit

Permalink
303 class 3.2
Browse files Browse the repository at this point in the history
  • Loading branch information
SichangHe committed Apr 2, 2024
1 parent 1fcd7ab commit 7bfe7e7
Showing 1 changed file with 28 additions and 3 deletions.
31 changes: 28 additions & 3 deletions src/notes/class_notes/stats303.md
Original file line number Diff line number Diff line change
Expand Up @@ -198,13 +198,14 @@ $$
⇒ S\vec u_k=\lambda\vec u_k
$$

## Markov chain Monte Carlo (MCMC) sampling method
## Monte Carlo sampling method

- sampling
- purpose: determine parameter when doing sum/integral
- good: from area of high probability & independent
- does not work in high dimension
- assume sample independence
- Monte Carlo drawback
- does not work in high dimension
- assume sample independence

### transformation method

Expand Down Expand Up @@ -259,3 +260,27 @@ $$

where temperature
$T\in(0,1),\quad T\leftarrow T\gamma,\quad \gamma=0.99\in(0,1)$

## Markov chain

- [transition matrix](stats210.html#transition-probability-matrix) $Q$
- stochastic matrix, because each row sum to 1
- $\{Q^n\}$ converge, stationary $\Leftarrow$
- all eigenvalue $|\lambda|≤1$
- $Q=A\Lambda A^{-1} ⇒ Q^n=A\Lambda^nA^{-1}$
where $\Lambda^n$ is diagonal with entries $\lambda_i^n$
- $\vec\pi_t$ probability be at state $x=1\ldots N$ at time $t$
- [stationary distribution](stats210.html#stationary-distribution):
$\pi_{m+1}=\pi_m$ when $m$ large
- $\pi_{t+1}=\pi_tQ$
- sampling method: given PDF $p(z)$, set $Q$ s.t. $\pi(z)=p(z)$

### detailed balance

Markov chain in stationary distribution if

$$
\pi(x)p_{xy}=\pi(y)p_{yx}
$$

## Markov chain Monte Carlo (MCMC)

0 comments on commit 7bfe7e7

Please sign in to comment.