pip install cogdata
sudo `which install_unrarlib.sh`
.
├── cogdata_task_task1
│ ├── cogdata_config.json (indicating a task path)
│ ├── merged.bin
│ ├── dataset1
│ │ ├── dataset1.bin
│ │ └── meta_info.json
│ └── dataset2
│ ├── dataset2.bin
│ └── meta_info.json
├── dataset1
│ ├── cogdata_info.json (indicating a dataset path)
│ ├── dataset1.json
│ └── dataset1.rar
└── dataset2
├── cogdata_info.json
├── dataset2.json
└── dataset2.zip
The motivation of this project is to provide lightweight APIs for large-scale NN-based data-processing, e.g. ImageTokenization. The abstraction has 3 parts:
- Dataset: Raw dataset from other organization in various formats, e.g. rar, zip, etc. The information are recorded at
cogdata_info.json
in its split folder. - Task: A task is a collection of "configs, results for different datsets, logs, merged results, and evenly split results". The config of a task are recorded in
cogdata_info.json
. The states (processed, hanging/running, unprocessed)of a dataset in this tasks are inmeta_info.json
. - DataSaver: The format of saved results. The first option is our
BinSaver
, which saves plain bytes with fixed length. It can be read or memmap very fast. The config of DataSaver are also with the task incogdata_info.json
.
cogdata create_dataset [-h] [--description DESCRIPTION] --data_files DATA_FILES [DATA_FILES ...] --data_format DATA_FORMAT [--text_files TEXT_FILES [TEXT_FILES ...]] [--text_format TEXT_FORMAT] name
Alias: cogdata data ...
. data_format
is chosen from class names in cogdata.datasets, e.g. StreamingRarDataset
. Texts related options are optional for text-image datasets.
cogdata create_task [-h] [--description DESCRIPTION] --task_type TASK_TYPE --saver_type SAVER_TYPE [--length_per_sample LENGTH_PER_SAMPLE] [--img_sizes IMG_SIZES [IMG_SIZES ...]] [--txt_len TXT_LEN]
[--dtype {int32,int64,float32,uint8,bool}] --model_path MODEL_PATH
task_id
Alias: cogdata task ...
. task_type
and saver_type
is chosen from class names in cogdata, e.g. ImageTextTokenizationTask
or BinarySaver
.
cogdata process [-h] --task_id TASK_ID [--nproc NPROC] [--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--batch_size BATCH_SIZE] [--ratio RATIO]
[datasets [datasets ...]]
The i-th proc will be binded to the i-th GPU.
cogdata merge [-h] --task_id TASK_ID
Merge all the processed data.
cogdata list [-h] [--task_id TASK_ID]
List all the current datasets in this folder.
cogdata clean [-h] [--task_id TASK_ID]
Clean the unfinished states of the task.
Add --extra_code PATH_TO_CODE
after cogdata
(e.g., cogdata --extra_code ../examples/convert2tar_task.py [task or process]
to execute and register your own task before running the command. See examples/
for details.
- 支持多种不同格式文本处理
- sphinx 注释文档更详细撰写
- 更精细化的参数管理,将tokenization一般化
- PPT & 视频介绍
- Merge 视频处理 [Wenyi]
- Merge Object detection [Zhuoyi]