This is the official code for our paper Belief-Enriched Pessimistic Q-Learning against Adversarial State Perturbations published at ICLR 2024. The default environment for Atari is Pong, you need to change the environment by changing the configs and use coresponding diffusion model.
This repo contains PF-RNN code from Particle Filter Recurrent Neural Networks(Ma et.al., 2019) and code from Progressive Distillation for Fast Sampling of Diffusion Models(Salimans and HO, 2022). This code is based on SA-DQN
We include pretrained PF-RNN, diffusion models and our models in pretrained folders
python3 pfrnns/main.py
python3 gen_atari_pic.py --config config/Pong_ours.json
python3 diffuion.py
Copy generated atari pics into diffusion_distiller folder
bash diffusion_distiller/atari_u_script.sh
python3 train.py --config config/Grid_continous_ours.json
python3 train_atari.py --config config/Pong_ours.json
python3 train_atari.py --config config/Pong_ours.json
python3 test_gridmaze.py --config config/Grid_continous_ours.json
python3 test_atari.py --config config/Pong_ours.json
@inproceedings{
sun2024beliefenriched,
title={Belief-Enriched Pessimistic Q-Learning against Adversarial State Perturbations},
author={Xiaolin Sun and Zizhan Zheng},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=7gDENzTzw1}
}