-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
31 changed files
with
11,518 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,217 @@ | ||
import argparse | ||
import os, random, time | ||
|
||
import numpy as np | ||
|
||
import torch | ||
|
||
torch.multiprocessing.set_start_method('spawn', force=True) | ||
import torch.distributed.rpc as rpc | ||
import torch.multiprocessing as mp | ||
|
||
from Utils.Helper import remote_method, remote_method_async | ||
from Characters.AsyncCharacters import ParameterServer, TrainerNet | ||
|
||
import optuna | ||
|
||
|
||
def get_parameter_server(gpu, world_size, dataset, batch_size, lr, | ||
mom, lambd, model, max_epoch, client_epoch, seed, exp_id, | ||
early_stop_round, early_stop_metric): | ||
param_server = ParameterServer(gpu=gpu, world_size=world_size, dataset=dataset, batch_size=batch_size, | ||
lr=lr, mom=mom, lambd=lambd, model=model, max_epoch=max_epoch, | ||
client_epoch=client_epoch, seed=seed, exp_id=exp_id, | ||
early_stop_round=early_stop_round, early_stop_metric=early_stop_metric) | ||
return param_server | ||
|
||
|
||
def get_worker(gpu, rank, world_size, dataset, model, batch_size, lr, seed, exp_id): | ||
train_server = TrainerNet(gpu=gpu, rank=rank, world_size=world_size, dataset=dataset, model=model, | ||
batch_size=batch_size, lr=lr, seed=seed, exp_id=exp_id) | ||
return train_server | ||
|
||
|
||
def run_driver(rank, world_size, gpu_list, dataset, batch_size, | ||
lr, mom, lambd, max_epoch, client_epoch, model, seed, q, | ||
early_stop_round, early_stop_metric): | ||
exp_id = str(int(time.time())) | ||
print(f"Driver initializing RPC, rank {rank}, world size {world_size}") | ||
rpc.init_rpc(name="driver", rank=rank, world_size=world_size) | ||
print("Initialized driver") | ||
param_server_rref = rpc.remote("parameter_server", get_parameter_server, | ||
args=(gpu_list[0], world_size - 1, dataset, batch_size, | ||
lr, mom, lambd, model, max_epoch, client_epoch, | ||
seed, exp_id, early_stop_round, early_stop_metric)) | ||
for _rank in range(1, world_size - 1): | ||
print(f"Driver registering worker node {_rank}") | ||
worker_server_rref = rpc.remote(f"trainer_{_rank}", get_worker, | ||
args=(gpu_list[_rank], _rank, world_size - 1, dataset, | ||
model, batch_size, lr, seed, exp_id)) | ||
print(f"Driver binding worker {_rank} with param server") | ||
remote_method(ParameterServer.embedding_workers, param_server_rref, worker_server_rref) | ||
remote_method(TrainerNet.embedding_param_server, worker_server_rref, param_server_rref) | ||
|
||
fut = remote_method_async(ParameterServer.instruct_training, param_server_rref) | ||
fut.wait() | ||
final_accuracy = remote_method(ParameterServer.get_final_accuract, param_server_rref) | ||
q.put(final_accuracy) | ||
rpc.shutdown() | ||
print("RPC shutdown on Driver") | ||
|
||
|
||
def run_parameter_server(rank, world_size): | ||
print(f"PS master initializing RPC, rank {rank}, world size {world_size}") | ||
rpc.init_rpc(name="parameter_server", rank=rank, world_size=world_size) | ||
print("Parameter server done initializing RPC") | ||
rpc.shutdown() | ||
print("RPC shutdown on parameter server") | ||
|
||
|
||
def run_worker(rank, world_size): | ||
print(f"Worker initializing RPC, rank {rank}, world size {world_size}") | ||
rpc.init_rpc(name=f"trainer_{rank}", rank=rank, world_size=world_size) | ||
print(f"Worker {rank} done initializing RPC") | ||
rpc.shutdown() | ||
print(f"RPC shutdown on Worker {rank}.") | ||
|
||
|
||
def regular_train(args, lr, mom, lambd, early_stop_round=-1, early_stop_metric=-1.0): | ||
print(f"Performing regular training, lr={lr}, mom={mom}, lambd={lambd}") | ||
|
||
os.environ['MASTER_ADDR'] = args.master_addr | ||
os.environ["MASTER_PORT"] = args.master_port | ||
|
||
torch.backends.cudnn.deterministic = True | ||
torch.backends.cudnn.benchmark = False | ||
torch.manual_seed(args.seed) | ||
torch.cuda.manual_seed(args.seed) | ||
random.seed(args.seed) | ||
np.random.seed(args.seed) | ||
|
||
processes = [] | ||
q = mp.Queue() | ||
world_size = args.world_size + 1 | ||
for rank in range(world_size): | ||
if rank == 0: | ||
p = mp.Process(target=run_parameter_server, args=(rank, world_size)) | ||
p.start() | ||
processes.append(p) | ||
elif rank == world_size - 1: | ||
p = mp.Process(target=run_driver, args=(rank, world_size, args.gpus.split(","), args.dataset, | ||
args.batch_size, lr, mom, lambd, args.max_epoch, | ||
args.client_epoch, args.model, args.seed, q, | ||
early_stop_round, early_stop_metric)) | ||
p.start() | ||
processes.append(p) | ||
else: | ||
p = mp.Process(target=run_worker, args=(rank, world_size)) | ||
p.start() | ||
processes.append(p) | ||
|
||
for p in processes: | ||
p.join() | ||
|
||
return q.get() | ||
|
||
|
||
def hyper_optuna(trial, args): | ||
if args.optuna_lr is None: | ||
lr = args.lr[0] | ||
else: | ||
lr = trial.suggest_float('lr', args.optuna_lr[0], args.optuna_lr[1]) | ||
|
||
if args.optuna_mom is None: | ||
mom = args.mom[0] | ||
else: | ||
mom = trial.suggest_float('mom', args.optuna_mom[0], args.optuna_mom[1]) | ||
|
||
if args.optuna_lambd is None: | ||
lambd = args.lambd[0] | ||
else: | ||
lambd = trial.suggest_float('lambd', args.optuna_lambd[0], args.optuna_lambd[1]) | ||
|
||
if args.optuna_early_stop is None: | ||
early_round = -1 | ||
early_metric = -1.0 | ||
else: | ||
early_round = int(args.optuna_early_stop[0]) | ||
early_metric = args.optuna_early_stop[1] | ||
|
||
return regular_train(args, lr, mom, lambd, early_round, early_metric) | ||
|
||
|
||
def optuna_train(args): | ||
print(f"Performing hyper-parameter search") | ||
study = optuna.create_study(direction="maximize") | ||
study.optimize(lambda trial: hyper_optuna(trial, args), n_trials=args.optuna_trials) | ||
|
||
pruned_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED] | ||
complete_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE] | ||
|
||
print("Study statistics: ") | ||
print(" Number of finished trials: ", len(study.trials)) | ||
print(" Number of pruned trials: ", len(pruned_trials)) | ||
print(" Number of complete trials: ", len(complete_trials)) | ||
|
||
print("Best trial:") | ||
trial = study.best_trial | ||
|
||
print(" Value: ", trial.value) | ||
|
||
print(" Params: ") | ||
for key, value in trial.params.items(): | ||
print(" {}: {}".format(key, value)) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
description="Federated Averaging Experiments") | ||
parser.add_argument("--world_size", type=int, default=5, | ||
help="""Total number of participating processes. | ||
Should be the sum of master node and all training nodes.""") | ||
parser.add_argument("--dataset", type=str, default="mnist", help="Dataset used to participate training.") | ||
parser.add_argument("--batch_size", type=int, default=32, help="Batch size for individual client.") | ||
parser.add_argument("--max_epoch", type=int, default=10, | ||
help="Sepcify how many epochs will the cluster trains for.") | ||
parser.add_argument("--client_epoch", type=int, default=5, help="Specify how many epochs will the client." | ||
"train for at each cluster epoch.") | ||
parser.add_argument("--lr", type=float, nargs="*", default=0.01, help="The learning rate of the cluster.") | ||
parser.add_argument("--mom", type=float, nargs="*", default=0.9, help="The momentum constant") | ||
parser.add_argument("--lambd", type=float, nargs="*", default=0.04, help="The compensation's variance constant.") | ||
parser.add_argument("--model", type=str, default="mnistnet", help="Specify the model to train.") | ||
parser.add_argument("--gpus", type=str, default="0,0,0,0,0", help="""Input GPU for training""") | ||
parser.add_argument("--master_addr", type=str, default="localhost", | ||
help="""Address of master, will default to localhost if not provided. | ||
Master must be able to accept network traffic on the address + port.""") | ||
parser.add_argument("--master_port", type=str, default="29500", | ||
help="""Port that master is listening on, will default to 29500 if not | ||
provided. Master must be able to accept network traffic on the host and port.""") | ||
parser.add_argument("--seed", type=int, default=2020, help="The seed of random function") | ||
parser.add_argument("--optuna", action="store_true", default=False, help="Search hyper-parameter") | ||
parser.add_argument("--optuna_mom", type=float, nargs=2, help="Set lower bound and higher bound of " | ||
"momentum search space") | ||
parser.add_argument("--optuna_lr", type=float, nargs=2, help="Set lower bound and higher bound of " | ||
"learning rate search space") | ||
parser.add_argument("--optuna_lambd", type=float, nargs=2, help="Set lower bound and higher bound of " | ||
"lambd search space") | ||
parser.add_argument("--optuna_trials", type=int, default=10, help="Set optuna rounds") | ||
parser.add_argument("--optuna_early_stop", type=float, nargs=2) | ||
|
||
args = parser.parse_args() | ||
|
||
assert args.dataset in ["mnist", "fmnist", "cifar10", "cifar100", "emnist", "wikitext2"], \ | ||
f"Dataset can only be one of mnist, fmnist, cifar10, cifar100, emnist, wikitext2" | ||
assert args.model in [""mnistnet", "resnet", "vgg", "mlp", "cnncifar", "transformer"], \ | ||
f"Model can only be one of `mnistnet`, `resnet`, `vgg`, `mlp`, `cnncifar`, `transformer`" | ||
|
||
if args.optuna: | ||
optuna_train(args) | ||
else: | ||
lr_list = [args.lr] if type(args.lr) == float else args.lr | ||
mom_list = [args.mom] if type(args.mom) == float else args.mom | ||
lambd_list = [args.lambd] if type(args.lambd) == float else args.lambd | ||
|
||
for lr in lr_list: | ||
for mom in mom_list: | ||
for lambd in lambd_list: | ||
regular_train(args, lr=lr, mom=mom, lambd=lambd) |
Oops, something went wrong.