Skip to content

StefanSalewski/minmaxheap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Heap with minimum and maximum access

Nim implementation of a Minimum-Maximum Heap as described in

Note
Nim generated API documentation is available here: http://ssalewski.de/minmaxheap.html

The implementation follow very closely these papers, writing the Nim code was straight forward. The heap is generic, this means it works for most data elements when "<" relation is defined. Add(), popMin() and popMax() operations are O(log N), access to min and max is O(1) according to Wikipedia. Build time of initial heap is linear O(N) and read access to min or max element is O(1).

Use cases for such type of a heap are rare. One application is a ID-Number generator, where IDs are generated in increasing order, but can be returned and reused. Reused is always the smallest available ID, but at the same time we need to know which is the largest ID still in use. That can be done with popMin() and max() operations. In the original paper external quicksort was mentioned as a use case.

Initial heap can be generated from an array or a seq. Pop() operations will fail when len() is already zero.

The elements in heap are stored in a seq, so there is nearly no space overhead involved.

Table 1. Cost in big O notation as a function of number of elements (N)
proc name operation costs

toMinMaxHeap()

creation

O(N)

initMinMaxHeap()

create empty heap

O(1)

min()

get minimum

O(1)

max()

get maximum

O(1)

clear()

reset

O(1)

len()

get number of elements

O(1)

add()

insert an element

O(log(n))

popMin()

delete minimum

O(log(n))

popMax()

delete maximum

O(log(n))

Install:

nimble install https://github.com/StefanSalewski/minmaxheap

Currently these procs are available:

API
type MinMaxHeap*[T] = distinct seq[T]

proc initMinMaxHeap*[T](): MinMaxHeap[T]

proc toMinMaxHeap*[T](h: openarray[T]): MinMaxHeap[T]

proc clear*[T](h: var MinMaxHeap[T])

proc len*[T](h: MinMaxHeap[T]): int

proc empty*[T](h: MinMaxHeap[T]): bool

proc add*[T](h: var MinMaxHeap[T]; i: T)

proc min*[T](h: var MinMaxHeap[T]): T

proc max*[T](h: var MinMaxHeap[T]): T

proc popMin*[T](h: var MinMaxHeap[T]): T

proc popMax*[T](h: var MinMaxHeap[T]): T

proc `$`*[T](h: MinMaxHeap[T]): string =

Here is an example how the heap can be used:

t.nim
import minmaxheap

var
  # h = toMinMaxHeap[int](@[5, 3, 9, 1, 0])
  h = toMinMaxHeap([5, 3, 9, 1, 0])

echo $(h) # @[0, 5, 9, 1, 3]
echo h.min # 0
echo h.max # 9
echo h.len # 5
echo h.popMin # 0
echo h.popMax # 9
echo h.len # 3
echo h.min # 1
echo h.max # 5
h.add(8)
echo h.len # 4
echo h.popMax # 8
echo h.len # 3
h.clear
echo h.len # 0

type
  O = object
    key: float

# we need < operator defines for elements
proc `<`(a, b: O): bool =
  a.key < b.key

var
  l = initMinMaxHeap[O]()
l.add(O(key: 1.2))
l.add(O(key: 0.9))
l.add(O(key: 3.3))
echo l.popMax # (key: 3.3)
echo l.popMin # (key: 0.9)

About

Heap with minimum and maximum access

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages