-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizer.py
40 lines (31 loc) · 1.41 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from audio_processor import AudioStream
import time
from PyQt6 import QtWidgets
import pyqtgraph as pg
import numpy as np
class AudioVisualizer:
def __init__(self, waveform_plot, spectrum_plot):
self.waveform_plot = waveform_plot
self.spectrum_plot = spectrum_plot
# Инициализируем графики
self.waveform_curve = self.waveform_plot.plot(pen='c', width=3)
self.spectrum_curve = self.spectrum_plot.plot(pen='m', width=3)
# Setup spectrum plot modes
self.spectrum_plot.setLogMode(x=True, y=True)
# Constants for FFT
self.CHUNK = 1024 * 2
self.RATE = 44100
# Setup data arrays
self.x = np.arange(0, 2 * self.CHUNK, 2)
self.x_fft = np.linspace(0, self.RATE // 2, self.CHUNK // 2)
# Set plot ranges
self.waveform_plot.setYRange(0, 255)
self.waveform_plot.setXRange(0, 2 * self.CHUNK)
self.spectrum_plot.setXRange(np.log10(20), np.log10(self.RATE/2))
self.spectrum_plot.setYRange(-4, 0)
def update_plots(self, data):
wf_data = (np.frombuffer(data, dtype=np.int16) + 128) % 255
self.waveform_curve.setData(self.x, wf_data)
sp_data = np.fft.fft(wf_data - 128)
sp_data = np.abs(sp_data[0:int(self.CHUNK/2)]) * 2 / (128 * self.CHUNK)
self.spectrum_curve.setData(self.x_fft, sp_data)