Skip to content

Context Information Refinement for Few-Shot Object Detection in Remote Sensing Images

License

Notifications You must be signed in to change notification settings

Superfly12138/CIR-FSD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Context Information Refinement for Few-Shot Object Detection in Remote Sensing Images

This is the original repository for this work, released by the main contributor, and will be maintained. Please star if it helps.

This repo contains the implementation of our state-of-the-art few-shot object detector for remote sensing images, described in our paper, Context Information Refinement for Few-Shot Object Detection in Remote Sensing Images. CIR-FSD is built upon the codebase FSCE and FsDet v0.1, which released by an ICML 2020 paper Frustratingly Simple Few-Shot Object Detection.

FSCE Figure

pic-1

pic-2

Installation

FsDet is built on Detectron2. But you don't need to build detectron2 seperately as this codebase is self-contained. You can follow the instructions below to install the dependencies and build FsDet. CIR-FSD functionalities are implemented as classand .py scripts in FsDet which therefore requires no extra build efforts.

Dependencies

  • Linux with Python >= 3.6
  • PyTorch >= 1.3
  • torchvision that matches the PyTorch installation
  • Dependencies: pip install -r requirements.txt
  • pycocotools: pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • OpenCV, optional, needed by demo and visualization pip install opencv-python
  • GCC >= 4.9

Build

python setup.py build develop  # you might need sudo

Note: you may need to rebuild FsDet after reinstalling a different build of PyTorch.

Data preparation

Our model supports two datasets: DIOR and NWPU VHR-10, both datasets are processed into VOC 2007 format.

The datasets and data splits are built-in, simply make sure the directory structure agrees with datasets/README.md to launch the program.

The default seeds that is used to report performace in research papers can be found in dataset/vocsplit/seed.

Code Structure

The code structure follows Detectron2 v0.1.* and fsdet.

  • configs: Configuration files (YAML) for train/test jobs.
  • datasets: Dataset files (see Data Preparation for more details)
  • fsdet
    • checkpoint: Checkpoint code.
    • config: Configuration code and default configurations.
    • data: Dataset code.
    • engine: Contains training and evaluation loops and hooks.
    • evaluation: Evaluation code for different datasets.
    • layers: Implementations of different layers used in models.
    • modeling: Code for models, including backbones, proposal networks, and prediction heads.
      • The majority of CIR-FSD functionality are implemtended inmodeling/backbone/backbone.py , modeling/backbone/FPN.py, and layers/attention.py
      • So one can first make sure FsDet v0.1 runs smoothly, and then refer to CIR-FSD implementations and configurations.
    • solver: Scheduler and optimizer code.
    • structures: Data types, such as bounding boxes and image lists.
    • utils: Utility functions.
  • tools
    • train_net.py: Training script.
    • test_net.py: Testing script.
    • ckpt_surgery.py: Surgery on checkpoints.
    • run_experiments.py: Running experiments across many seeds.
    • aggregate_seeds.py: Aggregating results from many seeds.

Train & Inference

Training

We follow the same training procedure of FsDet and we use random initialization for novel weights. For a full description of training procedure, see here.

1. Stage 1: Training base detector.

python tools/train_net.py --num-gpus 2 \
--config-file configs/PASCAL_VOC/base-training/R101_FPN_base_training_split1.yml

2. Random initialize weights for novel classes.

python tools/ckpt_surgery.py \
        --src1 checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_base1/model_final.pth \
        --method randinit \
        --save-dir checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_all1

This step will create a model_surgery.pth from model_final.pth.

3. Stage 2: Fine-tune for novel data.

python tools/train_net.py --num-gpus 2 \
        --config-file configs/PascalVOC-detection/split1/faster_rcnn_R_101_FPN_ft_all1_1shot-CIR-FRPN-RRPN.yml \
        --opts MODEL.WEIGHTS WEIGHTS_PATH

Where WEIGHTS_PATH points to the model_surgery.pth generated from the previous step. Or you can specify it in the configuration yml.

Evaluation

To evaluate the trained models, run

python tools/test_net.py --num-gpus 2 \
        --config-file configs/PascalVOC-detection/split1/faster_rcnn_R_101_FPN_ft_all1_1shot-CIR-FRPN-RRPN.yml \
        --eval-only

Or you can specify TEST.EVAL_PERIOD in the configuation yml to evaluate during training.

Multiple Runs

For ease of training and evaluation over multiple runs, fsdet provided several helpful scripts in tools/.

You can use tools/run_experiments.py to do the training and evaluation. For example, to experiment on 30 seeds of the first split of PascalVOC on all shots, run

python tools/run_experiments.py --num-gpus 2 --shots 5 10 20 --seeds 1 11 --split 1 --lr 0.005

After training and evaluation, you can use tools/aggregate_seeds.py to aggregate the results over all the seeds to obtain one set of numbers. To aggregate the 3-shot results of the above command, run

python tools/aggregate_seeds.py --shots 3 --seeds 10 --split 1 

About

Context Information Refinement for Few-Shot Object Detection in Remote Sensing Images

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published