Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changes to work with the Jux visual panel #6

Merged
merged 3 commits into from
Sep 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 14 additions & 30 deletions juxtorpus/viz/corpus.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,8 @@
def wordclouds(corpora, names: list[str],
max_words: int = 50,
metric: str = 'tf',
word_type: str = 'word',
stopwords: list[str] = None,
lower: bool = True):
dtm_name: str = 'tokens',
stopwords: list[str] = None):
MAX_COLS = 2
nrows = math.ceil(len(names) / 2)
fig, axes = plt.subplots(nrows=nrows, ncols=MAX_COLS, figsize=(16, 16 * 1.5))
Expand All @@ -26,9 +25,9 @@ def wordclouds(corpora, names: list[str],
wc = _wordcloud(corpus,
max_words=max_words,
metric=metric,
word_type=word_type,
dtm_name=dtm_name,
stopwords=stopwords,
lower=lower)
return_wc=False)
if nrows == 1:
ax = axes[c]
else:
Expand All @@ -42,9 +41,11 @@ def wordclouds(corpora, names: list[str],
plt.show()


def wordcloud(corpus, metric: str = 'tf', max_words: int = 50, word_type: str = 'word',
stopwords: list[str] = None, lower: bool = True):
wc = _wordcloud(corpus, max_words, metric, word_type, stopwords, lower)
def wordcloud(corpus, metric: str = 'tf', max_words: int = 50, dtm_name: str = 'tokens',
stopwords: list[str] = None, return_wc: bool = False):
wc = _wordcloud(corpus, max_words, metric, dtm_name, stopwords)
if return_wc:
return wc
# h, w = 12, 12 * 1.5
h, w = 6, 10
plt.figure(figsize=(h, w))
Expand All @@ -54,34 +55,17 @@ def wordcloud(corpus, metric: str = 'tf', max_words: int = 50, word_type: str =
plt.show()


def _wordcloud(corpus, max_words: int, metric: str, word_type: str, stopwords: list[str] = None, lower: bool = True):
def _wordcloud(corpus, max_words: int, metric: str, dtm_name: str, stopwords: list[str] = None):
if stopwords is None: stopwords = list()
stopwords.extend(ENGLISH_STOP_WORDS)
word_types = {'word', 'hashtag', 'mention'}
# word_types = {'word', 'hashtag', 'mention'}
metrics = {'tf', 'tfidf'}
assert word_type in word_types, f"{word_type} not in {', '.join(word_types)}"
assert dtm_name in corpus.dtms.keys(), f"{dtm_name} not in {', '.join(corpus.dtms.keys())}"
assert metric in metrics, f"{metric} not in {', '.join(metrics)}"
wc = WordCloud(background_color='white', max_words=max_words, height=600, width=1200, stopwords=stopwords)

def lower_wrapper(gen) -> Callable:
def generate_lowered(doc):
return (str(x).lower() for x in gen(doc))

return generate_lowered

if word_type == 'word':
dtm = corpus.dtm # corpus dtm is always lower cased.
elif word_type == 'hashtag':
gen = corpus._gen_hashtags_from
if lower: gen = lower_wrapper(gen)
dtm = corpus.create_custom_dtm(tokeniser_func=gen, inplace=False)
elif word_type == 'mention':
gen = corpus._gen_mentions_from
if lower: gen = lower_wrapper(gen)
dtm = corpus.create_custom_dtm(tokeniser_func=gen, inplace=False)
else:
raise ValueError(f"Word type {word_type} is not supported. Must be one of {', '.join(word_types)}")

dtm = corpus.dtms[dtm_name]

if metric == 'tf':
with dtm.without_terms(stopwords) as dtm:
counter = dtm.freq_table().series.to_dict()
Expand Down
Loading