-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
75c6c07
commit 9785a62
Showing
1 changed file
with
87 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
|
||
import numpy as np | ||
from dataclasses import dataclass | ||
|
||
from pathlib import Path | ||
import matplotlib.pyplot as plt | ||
from dataclasses import dataclass | ||
from time import time | ||
|
||
import numpy as np | ||
import time | ||
|
||
import sirf.STIR as STIR | ||
from sirf.contrib.partitioner import partitioner | ||
|
||
|
||
|
||
|
||
@dataclass | ||
class Dataset: | ||
acquired_data: STIR.AcquisitionData | ||
additive_term: STIR.AcquisitionData | ||
mult_factors: STIR.AcquisitionData | ||
OSEM_image: STIR.ImageData | ||
prior: STIR.RelativeDifferencePrior | ||
kappa: STIR.ImageData | ||
reference_image: STIR.ImageData | None | ||
whole_object_mask: STIR.ImageData | None | ||
background_mask: STIR.ImageData | None | ||
voi_masks: dict[str, STIR.ImageData] | ||
|
||
datasets = ["NeuroLF_Hoffman_Dataset", "Siemens_mMR_NEMA_IQ", "Siemens_Vision600_thorax"] | ||
|
||
outdir = "timing" | ||
|
||
sirf_verbosity = 0 | ||
|
||
outdir = Path(outdir) | ||
STIR.set_verbosity(sirf_verbosity) # set to higher value to diagnose problems | ||
STIR.AcquisitionData.set_storage_scheme('memory') # needed for get_subsets() | ||
_ = STIR.MessageRedirector(str(outdir / 'info.txt'), str(outdir / 'warnings.txt'), str(outdir / 'errors.txt')) | ||
|
||
num_tries = 10 | ||
for dataset in datasets: | ||
print("Timing information for: ", dataset) | ||
srcdir = Path("/mnt/share/petric" + "/" + dataset) | ||
|
||
acquired_data = STIR.AcquisitionData(str(srcdir / 'prompts.hs')) | ||
additive_term = STIR.AcquisitionData(str(srcdir / 'additive_term.hs')) | ||
mult_factors = STIR.AcquisitionData(str(srcdir / 'mult_factors.hs')) | ||
OSEM_image = STIR.ImageData(str(srcdir / 'OSEM_image.hv')) | ||
|
||
print("OSEM: ", OSEM_image.shape) | ||
print("acquired_data: ", acquired_data.shape) | ||
|
||
n_subs = [1, 2, 4, 8, 16, 32, 64] | ||
ave_forward = [] | ||
ave_backward = [] | ||
ave_priorgrad = [] | ||
ave_prior = [] | ||
|
||
for k, n_sub in enumerate(n_subs): | ||
|
||
data_sub, acq_models, obj_funs = partitioner.data_partition(acquired_data, additive_term, | ||
mult_factors, n_sub, | ||
initial_image=OSEM_image) | ||
|
||
|
||
y = data_sub[0].copy() | ||
x = OSEM_image.copy() | ||
|
||
t1 = time.time() | ||
for i in range(num_tries): | ||
acq_models[0].forward(OSEM_image, out=y) | ||
|
||
ave_forward.append(n_sub*(time.time() - t1)/num_tries) | ||
print("FORWARD for {} sub is: {}".format(n_sub, ave_forward[-1])) | ||
|
||
t1 = time.time() | ||
for i in range(num_tries): | ||
|
||
acq_models[0].adjoint(y, out=x) | ||
|
||
ave_backward.append(n_sub*(time.time() - t1)/num_tries) | ||
print("ADJOINT for {} sub is: {}".format(n_sub, ave_backward[-1])) | ||
|
||
|