-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
greedy multio iteration learning to optimise
- Loading branch information
1 parent
317c224
commit d24816d
Showing
3 changed files
with
553 additions
and
285 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
# %% | ||
|
||
from pathlib import Path | ||
import sirf.STIR as STIR | ||
import numpy as np | ||
import logging | ||
import os | ||
from dataclasses import dataclass | ||
from matplotlib import pyplot as plt | ||
from random import shuffle | ||
|
||
|
||
log = logging.getLogger('petric') | ||
TEAM = os.getenv("GITHUB_REPOSITORY", "SyneRBI/PETRIC-").split("/PETRIC-", 1)[-1] | ||
VERSION = os.getenv("GITHUB_REF_NAME", "") | ||
OUTDIR = Path(f"/o/logs/{TEAM}/{VERSION}" if TEAM and VERSION else "./output") | ||
if not (SRCDIR := Path("/mnt/share/petric")).is_dir(): | ||
SRCDIR = Path("./data") | ||
|
||
|
||
def construct_RDP(penalty_strength, initial_image, kappa, max_scaling=1e-3): | ||
""" | ||
Construct a smoothed Relative Difference Prior (RDP) | ||
initial_image: used to determine a smoothing factor (epsilon). | ||
kappa: used to pass voxel-dependent weights. | ||
""" | ||
prior = getattr(STIR, 'CudaRelativeDifferencePrior', STIR.RelativeDifferencePrior)() | ||
# need to make it differentiable | ||
epsilon = initial_image.max() * max_scaling | ||
prior.set_epsilon(epsilon) | ||
prior.set_penalisation_factor(penalty_strength) | ||
prior.set_kappa(kappa) | ||
prior.set_up(initial_image) | ||
return prior | ||
@dataclass | ||
class Dataset: | ||
acquired_data: STIR.AcquisitionData | ||
additive_term: STIR.AcquisitionData | ||
mult_factors: STIR.AcquisitionData | ||
OSEM_image: STIR.ImageData | ||
prior: STIR.RelativeDifferencePrior | ||
kappa: STIR.ImageData | ||
reference_image: STIR.ImageData | None | ||
whole_object_mask: STIR.ImageData | None | ||
background_mask: STIR.ImageData | None | ||
voi_masks: dict[str, STIR.ImageData] | ||
|
||
def get_data(srcdir=".", outdir=OUTDIR, sirf_verbosity=0): | ||
""" | ||
Load data from `srcdir`, constructs prior and return as a `Dataset`. | ||
Also redirects sirf.STIR log output to `outdir`. | ||
""" | ||
srcdir = Path(srcdir) | ||
outdir = Path(outdir) | ||
STIR.set_verbosity(sirf_verbosity) # set to higher value to diagnose problems | ||
STIR.AcquisitionData.set_storage_scheme('memory') # needed for get_subsets() | ||
|
||
_ = STIR.MessageRedirector(str(outdir / 'info.txt'), str(outdir / 'warnings.txt'), str(outdir / 'errors.txt')) | ||
acquired_data = STIR.AcquisitionData(str(srcdir / 'prompts.hs')) | ||
additive_term = STIR.AcquisitionData(str(srcdir / 'additive_term.hs')) | ||
mult_factors = STIR.AcquisitionData(str(srcdir / 'mult_factors.hs')) | ||
OSEM_image = STIR.ImageData(str(srcdir / 'OSEM_image.hv')) | ||
kappa = STIR.ImageData(str(srcdir / 'kappa.hv')) | ||
if (penalty_strength_file := (srcdir / 'penalisation_factor.txt')).is_file(): | ||
penalty_strength = float(np.loadtxt(penalty_strength_file)) | ||
else: | ||
penalty_strength = 1 / 700 # default choice | ||
prior = construct_RDP(penalty_strength, OSEM_image, kappa) | ||
|
||
def get_image(fname): | ||
if (source := srcdir / 'PETRIC' / fname).is_file(): | ||
return STIR.ImageData(str(source)) | ||
return None # explicit to suppress linter warnings | ||
|
||
reference_image = get_image('reference_image.hv') | ||
whole_object_mask = get_image('VOI_whole_object.hv') | ||
background_mask = get_image('VOI_background.hv') | ||
voi_masks = { | ||
voi.stem[4:]: STIR.ImageData(str(voi)) | ||
for voi in (srcdir / 'PETRIC').glob("VOI_*.hv") if voi.stem[4:] not in ('background', 'whole_object')} | ||
|
||
return Dataset(acquired_data, additive_term, mult_factors, OSEM_image, prior, kappa, reference_image, | ||
whole_object_mask, background_mask, voi_masks) | ||
|
||
|
||
if SRCDIR.is_dir(): | ||
data_dirs_metrics = [(SRCDIR / "Siemens_mMR_NEMA_IQ", OUTDIR / "mMR_NEMA"), | ||
(SRCDIR / "NeuroLF_Hoffman_Dataset", OUTDIR / "NeuroLF_Hoffman"), | ||
(SRCDIR / "Siemens_Vision600_thorax", OUTDIR / "Vision600_thorax")] | ||
|
||
dataset = "nema" | ||
if dataset == "nema": | ||
data = get_data(srcdir=SRCDIR / "Siemens_mMR_NEMA_IQ", outdir=OUTDIR / "mMR_NEMA") | ||
elif dataset == "hoffman": | ||
data = get_data(srcdir=SRCDIR / "NeuroLF_Hoffman_Dataset", outdir=OUTDIR / "NeuroLF_Hoffman") | ||
elif dataset == "thorax": | ||
data = get_data(srcdir=SRCDIR / "Siemens_Vision600_thorax", outdir=OUTDIR / "Vision600_thorax") | ||
print("Data loaded") | ||
|
||
# %% | ||
from sirf.contrib.partitioner import partitioner | ||
num_subsets = 5 | ||
|
||
if dataset == "nema": | ||
_, _, obj_funs = partitioner.data_partition(data.acquired_data, data.additive_term, | ||
data.mult_factors, num_subsets, | ||
initial_image=data.OSEM_image, | ||
mode="staggered") | ||
_, _, full_obj_fun = partitioner.data_partition(data.acquired_data, data.additive_term, | ||
data.mult_factors, 1, | ||
initial_image=data.OSEM_image, | ||
mode="staggered") | ||
elif dataset == "hoffman": | ||
_, _, obj_funs = partitioner.data_partition(data.acquired_data, data.additive_term, | ||
data.mult_factors, num_subsets, | ||
initial_image=data.OSEM_image, | ||
mode="staggered") | ||
_, _, full_obj_fun = partitioner.data_partition(data.acquired_data, data.additive_term, | ||
data.mult_factors, 1, | ||
initial_image=data.OSEM_image, | ||
mode="staggered") | ||
elif dataset == "thorax": | ||
_, _, obj_funs = partitioner.data_partition(data.acquired_data, data.additive_term, | ||
data.mult_factors, num_subsets, | ||
initial_image=data.OSEM_image, | ||
mode="staggered") | ||
_, _, full_obj_fun = partitioner.data_partition(data.acquired_data, data.additive_term, | ||
data.mult_factors, 1, | ||
initial_image=data.OSEM_image, | ||
mode="staggered") | ||
|
||
print("Data partitioned") | ||
|
||
|
||
# make dir is non existent | ||
Path("unrolled_imgs").mkdir(exist_ok=True) | ||
# make subdir of dataset | ||
Path(f"unrolled_imgs/{dataset}").mkdir(exist_ok=True) | ||
dir_path = Path(f"unrolled_imgs/{dataset}") | ||
|
||
# %% | ||
import torch | ||
#torch.cuda.set_per_process_memory_fraction(0.2) | ||
class _SIRF_objective_wrapper(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, x_torch, x_sirf, obj): | ||
ctx.device = x_torch.device | ||
ctx.dtype = x_torch.dtype | ||
ctx.shape = x_torch.shape | ||
x_torch = x_torch.data.clone().cpu().detach().squeeze().numpy() | ||
x_sirf = x_sirf.fill(x_torch) | ||
ctx.x_sirf = x_sirf | ||
ctx.obj = obj | ||
|
||
return -torch.tensor(obj(x_sirf.fill(x_torch)), device=ctx.device, dtype=ctx.dtype) | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
#x_torch = ctx.saved_tensors | ||
""" print("torch.cuda.memory_allocated: %fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024)) | ||
print("torch.cuda.memory_reserved: %fGB"%(torch.cuda.memory_reserved(0)/1024/1024/1024)) | ||
print("torch.cuda.max_memory_reserved: %fGB"%(torch.cuda.max_memory_reserved(0)/1024/1024/1024)) """ | ||
ctx.obj.gradient(ctx.x_sirf) | ||
|
||
grad_input = -torch.tensor(ctx.obj.gradient(ctx.x_sirf).as_array(), device=ctx.device, dtype=ctx.dtype).view(ctx.shape)*grad_output | ||
return grad_input, None, None | ||
|
||
|
||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
device = 'cpu' | ||
class NetworkPreconditioner(torch.nn.Module): | ||
def __init__(self, n_layers = 1, hidden_channels = 32, kernel_size = 5): | ||
super(NetworkPreconditioner, self).__init__() | ||
self.list_of_conv2 = torch.nn.ModuleList() | ||
self.list_of_conv2.append(torch.nn.Conv2d(1, hidden_channels, kernel_size, padding='same', bias=False)) | ||
for _ in range(n_layers): | ||
self.list_of_conv2.append(torch.nn.Conv2d(hidden_channels, hidden_channels, kernel_size, padding='same', bias=False)) | ||
self.list_of_conv2.append(torch.nn.Conv2d(hidden_channels, 1, kernel_size, padding='same', bias=False)) | ||
self.activation = torch.nn.ReLU() | ||
def forward(self, x): | ||
for layer in self.list_of_conv2[:-1]: | ||
x = layer(x) | ||
x = self.activation(x) | ||
x = self.list_of_conv2[-1](x) | ||
return x | ||
|
||
|
||
class DeepUnrolledPreconditioner(torch.nn.Module): | ||
def __init__(self, unrolled_iterations = 10, n_layers = 1, hidden_channels = 32, kernel_size = 5, single_network = False): | ||
super(DeepUnrolledPreconditioner, self).__init__() | ||
self.nets = torch.nn.ModuleList() | ||
self.unrolled_iterations = unrolled_iterations | ||
self.single_network = single_network | ||
if single_network: | ||
self.nets.append(NetworkPreconditioner(n_layers, hidden_channels, kernel_size)) | ||
else: | ||
for _ in range(unrolled_iterations): | ||
self.nets.append(NetworkPreconditioner(n_layers, hidden_channels, kernel_size)) | ||
def forward(self, x, obj_funs, sirf_img, compute_upto = 1, plot=False, epoch = 0, update_filter = STIR.TruncateToCylinderProcessor()): | ||
xs = [] | ||
if compute_upto > self.unrolled_iterations: raise ValueError("Cannot compute more than unrolled_iterations") | ||
for i in range(compute_upto): | ||
if plot: | ||
fig, axs = plt.subplots(1, 3, figsize=(30, 10)) | ||
|
||
tmp = obj_funs[i].gradient(sirf_img.fill(x.detach().cpu().squeeze().numpy())) | ||
update_filter.apply(tmp) | ||
grad = -torch.tensor(tmp.as_array(), device=device).unsqueeze(1) | ||
grad_sens = grad * (x + 1e-3)/(torch.tensor(obj_funs[i].get_subset_sensitivity(0).as_array(), device=device).unsqueeze(1) + 1e-3) | ||
if self.single_network: | ||
precond = self.nets[0](grad_sens) | ||
else: | ||
precond = self.nets[i](grad_sens) | ||
if plot: | ||
fig.colorbar(axs[0].imshow(grad_sens.detach().cpu().numpy()[72, 0, :, :]), ax=axs[0]) | ||
axs[0].set_title("Gradient") | ||
fig.colorbar(axs[1].imshow(precond.detach().cpu().numpy()[72,0, :, :]), ax=axs[1]) | ||
axs[1].set_title("Preconditioner") | ||
x = x - precond | ||
x.clamp_(0) | ||
xs.append(x) | ||
if plot: | ||
fig.colorbar(axs[2].imshow(x.detach().cpu().numpy()[72,0, :, :]), ax=axs[2]) | ||
axs[2].set_title("Updated Image") | ||
plt.savefig(f"{dir_path}/image_e{epoch}_it{i}.png") | ||
plt.close() | ||
return xs | ||
|
||
|
||
unrolled_iterations = num_subsets | ||
precond = DeepUnrolledPreconditioner(unrolled_iterations=unrolled_iterations, n_layers=1, hidden_channels=16, kernel_size=5, single_network=False) | ||
precond.to(device) | ||
print("Preconditioner created and moved to device") | ||
|
||
optimizer = torch.optim.Adam(precond.parameters(), lr=1e-4) | ||
|
||
data.prior.set_penalisation_factor(data.prior.get_penalisation_factor() / len(obj_funs)) | ||
data.prior.set_up(data.OSEM_image) | ||
for f in obj_funs: # add prior evenly to every objective function | ||
f.set_prior(data.prior) | ||
|
||
osem_input_torch = torch.tensor(data.OSEM_image.as_array(), device=device).unsqueeze(1) | ||
x_sirf = data.OSEM_image.clone() | ||
losses = [] | ||
for i in range(unrolled_iterations*100): | ||
optimizer.zero_grad() | ||
shuffle(obj_funs) | ||
compute_upto = (i//100)+1 | ||
xs = precond(osem_input_torch, obj_funs, compute_upto = compute_upto, sirf_img = x_sirf, plot=True, epoch=i) | ||
loss = 0 | ||
for loss_i in range(compute_upto): | ||
loss += _SIRF_objective_wrapper.apply(xs[0], x_sirf, full_obj_fun[0]) | ||
loss = loss/compute_upto | ||
print(f"Iteration: {i}, Loss: {loss.item()}") | ||
loss.backward() | ||
optimizer.step() | ||
plt.imshow(xs[loss_i].detach().cpu().numpy()[72,0, :, :]) | ||
# Make title loss value | ||
plt.title(f"Loss: {loss.item()}") | ||
plt.colorbar() | ||
plt.savefig(f"{dir_path}/final_image_{i}.png") | ||
plt.close() | ||
plt.plot(losses) | ||
plt.savefig(f"{dir_path}/losses.png") | ||
plt.close() | ||
|
||
|
Oops, something went wrong.