Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[feature] fix dependency, add legacy weights convertor #13

Merged
merged 1 commit into from
Aug 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 94 additions & 0 deletions misc/legacy_weights_convertor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
import json
import os
from typing import Dict, List, Optional

import fire
import torch
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM

import mixlora

legacy_proj_names = {
"w1_proj": "gate_proj",
"w2_proj": "down_proj",
"w3_proj": "up_proj",
}

modern_proj_names = {
"gate_proj": "w1_proj",
"down_proj": "w2_proj",
"up_proj": "w3_proj",
}


def from_legacy(name_or_path: str, output_dir: Optional[str] = None):
if not os.path.exists(name_or_path):
assert output_dir is not None
name_or_path = snapshot_download(repo_id=name_or_path, repo_type="model")

if output_dir is None:
output_dir = name_or_path

if not os.path.exists(output_dir):
os.makedirs(output_dir)

with open(
name_or_path + os.sep + "adapter_config.json", "r", encoding="utf8"
) as fp:
config = json.load(fp)
assert "routing_strategy" in config and config["routing_strategy"] == "mixtral"
config["routing_strategy"] = "mixlora"
target_modules: List[str] = []
assert isinstance(config["target_modules"], List)
for target in config["target_modules"]:
if target in legacy_proj_names:
target = legacy_proj_names[target]
if target in mixlora.config.lora_target_modules:
target_modules.append(target)
config["target_modules"] = target_modules
config = mixlora.MixLoraConfig.from_config(config)

config.check()

weights: Dict[str, torch.Tensor] = torch.load(
name_or_path + os.sep + "adapter_model.bin", map_location="cpu"
)

model = AutoModelForCausalLM.from_pretrained(
config.base_model_,
torch_dtype=torch.float16,
device_map="cpu",
)

for layer_idx, layer in enumerate(model.model.layers):
weights[f"mixlora.layers.{layer_idx}.mlp.moe_gate.weight"] = weights.pop(
f"mixlora.layers.{layer_idx}.gate.weight"
)
for proj_name, inject in config.target_modules_.items():
if not inject or not hasattr(layer.mlp, proj_name):
continue
for expert_idx in range(config.num_experts_):
new_layer_prefix_name = (
f"mixlora.layers.{layer_idx}.mlp.{proj_name}.experts.{expert_idx}"
)
old_layer_prefix_name = (
f"mixlora.layers.{layer_idx}.experts.{expert_idx}.{proj_name}"
)
if f"{old_layer_prefix_name}.lora_A.weight" not in weights:
old_layer_prefix_name = f"mixlora.layers.{layer_idx}.experts.{expert_idx}.{modern_proj_names[proj_name]}"
weights[f"{new_layer_prefix_name}.lora_A.weight"] = weights.pop(
f"{old_layer_prefix_name}.lora_A.weight"
)
weights[f"{new_layer_prefix_name}.lora_B.weight"] = weights.pop(
f"{old_layer_prefix_name}.lora_B.weight"
)

torch.save(weights, output_dir + os.sep + "adapter_model.bin")

with open(output_dir + os.sep + "adapter_config.json", "w") as f:
json.dump(config.export(), f, indent=4)


if __name__ == "__main__":
fire.Fire(from_legacy)
4 changes: 3 additions & 1 deletion mixlora/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -351,7 +351,9 @@ def load_adapter_weights(
config.adapter_name_ = adapter_name
config.dtype_ = dtype

weights = torch.load(
config.check()

weights: Dict[str, torch.Tensor] = torch.load(
name_or_path + os.sep + "adapter_model.bin", map_location=device
)

Expand Down
6 changes: 3 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"

[project]
name = "mixlora"
version = "0.2.1"
version = "0.2.2"
description = "State-of-the-art Parameter-Efficient MoE Fine-tuning Method"
readme = "README.md"
requires-python = ">=3.8"
Expand All @@ -14,8 +14,8 @@ classifiers = [
"Operating System :: OS Independent",
]
dependencies = [
"torch>=2.3.0,<2.4.0",
"transformers>=4.43.0,<4.44.0",
"torch>=2.2.0",
"transformers>=4.43.0",
"huggingface_hub",
]

Expand Down
Loading