-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraphicsEngine.cpp
895 lines (757 loc) · 30.8 KB
/
GraphicsEngine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
#include "olcConsoleGameEngine.h"
#include <fstream>
#include <sstream>
#include <algorithm>
using namespace std;
// 2d structure holding texture coordinates
struct vec2d {
float u = 0;
float v = 0;
float w = 1;
};
struct vec3d {
float x = 0;
float y = 0;
float z = 0;
float w = 1.0f; // required for various matrix vector multiplication
};
struct triangle {
vec3d p[3];
vec2d t[3];
// represent the colours of the triangle
wchar_t sym;
short col;
};
struct mesh {
vector<triangle> tris;
bool LoadFromObjectFile(string sFilename, bool bHasTexture = false) { // change to true if object file has textures
ifstream f(sFilename);
if (!f.is_open()) {
// if we cannot open the file
return false;
}
// local cache of vertices
vector<vec3d> vertices;
vector<vec2d> texs;
while (!f.eof()) {
char line[128]; // assume that each line is a maximum of 128 characters long
f.getline(line, 128);
stringstream s;
s << line;
char junk;
if (line[0] == 'v') {
if (line[1] == 't') {
// reading texture
vec2d v;
s >> junk >> junk >> v.u >> v.v;
texs.push_back(v);
}
else {
// reading vertex
vec3d v;
s >> junk >> v.x >> v.y >> v.z;
vertices.push_back(v);
}
}
if (!bHasTexture) {
if (line[0] == 'f') {
// reading triangle face
int f[3];
s >> junk >> f[0] >> f[1] >> f[2];
tris.push_back({ vertices[f[0] - 1], vertices[f[1] - 1], vertices[f[2] - 1] });
}
}
else {
if (line[0] == 'f') {
s >> junk;
string tokens[6];
int nTokenCount = -1;
while (!s.eof()) {
char c = s.get();
if (c == ' ' || c == '/') {
nTokenCount++;
}
else {
tokens[nTokenCount].append(1, c);
}
}
tokens[nTokenCount].pop_back();
tris.push_back({ vertices[stoi(tokens[0]) - 1], vertices[stoi(tokens[2]) - 1], vertices[stoi(tokens[4]) - 1],
texs[stoi(tokens[1]) - 1], texs[stoi(tokens[3]) - 1], texs[stoi(tokens[5]) - 1] });
}
}
}
return true;
}
};
struct mat4x4 {
float m[4][4] = { 0 };
};
class engine3D : public olcConsoleGameEngine {
public:
engine3D() {
m_sAppName = L"3D Demo";
}
private:
mesh meshCube;
mat4x4 matProj;
vec3d vCamera;
vec3d vLookDir;
float fYaw; // rotation in the xz plane required to implement first-person camera
float fTheta;
olcSprite* sprTex1;
vec3d Matrix_MultiplyVector(mat4x4& m, vec3d& i)
{
vec3d v;
v.x = i.x * m.m[0][0] + i.y * m.m[1][0] + i.z * m.m[2][0] + i.w * m.m[3][0];
v.y = i.x * m.m[0][1] + i.y * m.m[1][1] + i.z * m.m[2][1] + i.w * m.m[3][1];
v.z = i.x * m.m[0][2] + i.y * m.m[1][2] + i.z * m.m[2][2] + i.w * m.m[3][2];
v.w = i.x * m.m[0][3] + i.y * m.m[1][3] + i.z * m.m[2][3] + i.w * m.m[3][3];
return v;
}
mat4x4 Matrix_MakeIdentity()
{
mat4x4 matrix;
matrix.m[0][0] = 1.0f;
matrix.m[1][1] = 1.0f;
matrix.m[2][2] = 1.0f;
matrix.m[3][3] = 1.0f;
return matrix;
}
mat4x4 Matrix_MakeRotationX(float fAngleRad)
{
mat4x4 matrix;
matrix.m[0][0] = 1.0f;
matrix.m[1][1] = cosf(fAngleRad);
matrix.m[1][2] = sinf(fAngleRad);
matrix.m[2][1] = -sinf(fAngleRad);
matrix.m[2][2] = cosf(fAngleRad);
matrix.m[3][3] = 1.0f;
return matrix;
}
mat4x4 Matrix_MakeRotationY(float fAngleRad)
{
mat4x4 matrix;
matrix.m[0][0] = cosf(fAngleRad);
matrix.m[0][2] = sinf(fAngleRad);
matrix.m[2][0] = -sinf(fAngleRad);
matrix.m[1][1] = 1.0f;
matrix.m[2][2] = cosf(fAngleRad);
matrix.m[3][3] = 1.0f;
return matrix;
}
mat4x4 Matrix_MakeRotationZ(float fAngleRad)
{
mat4x4 matrix;
matrix.m[0][0] = cosf(fAngleRad);
matrix.m[0][1] = sinf(fAngleRad);
matrix.m[1][0] = -sinf(fAngleRad);
matrix.m[1][1] = cosf(fAngleRad);
matrix.m[2][2] = 1.0f;
matrix.m[3][3] = 1.0f;
return matrix;
}
mat4x4 Matrix_MakeTranslation(float x, float y, float z)
{
mat4x4 matrix;
matrix.m[0][0] = 1.0f;
matrix.m[1][1] = 1.0f;
matrix.m[2][2] = 1.0f;
matrix.m[3][3] = 1.0f;
matrix.m[3][0] = x;
matrix.m[3][1] = y;
matrix.m[3][2] = z;
return matrix;
}
mat4x4 Matrix_MakeProjection(float fFovDegrees, float fAspectRatio, float fNear, float fFar)
{
float fFovRad = 1.0f / tanf(fFovDegrees * 0.5f / 180.0f * 3.14159f);
mat4x4 matrix;
matrix.m[0][0] = fAspectRatio * fFovRad;
matrix.m[1][1] = fFovRad;
matrix.m[2][2] = fFar / (fFar - fNear);
matrix.m[3][2] = (-fFar * fNear) / (fFar - fNear);
matrix.m[2][3] = 1.0f;
matrix.m[3][3] = 0.0f;
return matrix;
}
mat4x4 Matrix_MultiplyMatrix(mat4x4& m1, mat4x4& m2)
{
mat4x4 matrix;
for (int c = 0; c < 4; c++)
for (int r = 0; r < 4; r++)
matrix.m[r][c] = m1.m[r][0] * m2.m[0][c] + m1.m[r][1] * m2.m[1][c] + m1.m[r][2] * m2.m[2][c] + m1.m[r][3] * m2.m[3][c];
return matrix;
}
mat4x4 Matrix_PointAt(vec3d& pos, vec3d& target, vec3d& up)
{
// pos - where the vector should be
// target is akin to forward vector
// Calculate new forward direction
vec3d newForward = Vector_Sub(target, pos);
newForward = Vector_Normalize(newForward);
// Calculate new Up direction
vec3d a = Vector_Mul(newForward, Vector_DotProduct(up, newForward));
vec3d newUp = Vector_Sub(up, a);
newUp = Vector_Normalize(newUp);
// New Right direction is easy, its just cross product
vec3d newRight = Vector_CrossProduct(newUp, newForward);
// Construct Dimensioning and Translation Matrix
mat4x4 matrix;
matrix.m[0][0] = newRight.x; matrix.m[0][1] = newRight.y; matrix.m[0][2] = newRight.z; matrix.m[0][3] = 0.0f;
matrix.m[1][0] = newUp.x; matrix.m[1][1] = newUp.y; matrix.m[1][2] = newUp.z; matrix.m[1][3] = 0.0f;
matrix.m[2][0] = newForward.x; matrix.m[2][1] = newForward.y; matrix.m[2][2] = newForward.z; matrix.m[2][3] = 0.0f;
matrix.m[3][0] = pos.x; matrix.m[3][1] = pos.y; matrix.m[3][2] = pos.z; matrix.m[3][3] = 1.0f;
return matrix;
}
// Only for Rotation/Translation Matrices
mat4x4 Matrix_QuickInverse(mat4x4& m) {
mat4x4 matrix;
matrix.m[0][0] = m.m[0][0]; matrix.m[0][1] = m.m[1][0]; matrix.m[0][2] = m.m[2][0]; matrix.m[0][3] = 0.0f;
matrix.m[1][0] = m.m[0][1]; matrix.m[1][1] = m.m[1][1]; matrix.m[1][2] = m.m[2][1]; matrix.m[1][3] = 0.0f;
matrix.m[2][0] = m.m[0][2]; matrix.m[2][1] = m.m[1][2]; matrix.m[2][2] = m.m[2][2]; matrix.m[2][3] = 0.0f;
matrix.m[3][0] = -(m.m[3][0] * matrix.m[0][0] + m.m[3][1] * matrix.m[1][0] + m.m[3][2] * matrix.m[2][0]);
matrix.m[3][1] = -(m.m[3][0] * matrix.m[0][1] + m.m[3][1] * matrix.m[1][1] + m.m[3][2] * matrix.m[2][1]);
matrix.m[3][2] = -(m.m[3][0] * matrix.m[0][2] + m.m[3][1] * matrix.m[1][2] + m.m[3][2] * matrix.m[2][2]);
matrix.m[3][3] = 1.0f;
return matrix;
}
vec3d Vector_Add(vec3d& v1, vec3d& v2) {
return { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
}
vec3d Vector_Sub(vec3d& v1, vec3d& v2)
{
return { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
}
vec3d Vector_Mul(vec3d& v1, float k)
{
return { v1.x * k, v1.y * k, v1.z * k };
}
vec3d Vector_Div(vec3d& v1, float k)
{
return { v1.x / k, v1.y / k, v1.z / k };
}
float Vector_DotProduct(vec3d& v1, vec3d& v2)
{
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
float Vector_Length(vec3d& v)
{
return sqrtf(Vector_DotProduct(v, v));
}
vec3d Vector_Normalize(vec3d& v)
{
float l = Vector_Length(v);
return { v.x / l, v.y / l, v.z / l };
}
vec3d Vector_CrossProduct(vec3d& v1, vec3d& v2)
{
vec3d v;
v.x = v1.y * v2.z - v1.z * v2.y;
v.y = v1.z * v2.x - v1.x * v2.z;
v.z = v1.x * v2.y - v1.y * v2.x;
return v;
}
vec3d Vector_IntersectPlane(vec3d& plane_p, vec3d& plane_n, vec3d& lineStart, vec3d& lineEnd, float &t) {
// function will return a vector if the line crosses the plane
plane_n = Vector_Normalize(plane_n);
float plane_d = -Vector_DotProduct(plane_n, plane_p);
float ad = Vector_DotProduct(lineStart, plane_n);
float bd = Vector_DotProduct(lineEnd, plane_n);
t = (-plane_d - ad) / (bd - ad); // normalized distance along line between two points where intersection has happened
vec3d lineStartToEnd = Vector_Sub(lineEnd, lineStart);
vec3d lineToIntersect = Vector_Mul(lineStartToEnd, t);
return Vector_Add(lineStart, lineToIntersect);
}
int Triangle_ClipAgainstPlane(vec3d plane_p, vec3d plane_n, triangle& in_tri, triangle& out_tri1, triangle& out_tri2) {
// returns an integer representing number of triangles returned by the function
// make sure plane normal is indeed normal
plane_n = Vector_Normalize(plane_n);
// return signed shortest distance from point to plane, plane normal must be normalized
auto dist = [&](vec3d& p) {
vec3d n = Vector_Normalize(p);
return (plane_n.x * p.x + plane_n.y * p.y + plane_n.z * p.z - Vector_DotProduct(plane_n, plane_p));
};
// create two temp storage arrays to classify points on either side of plane
// if distance sign is positive, point lies on inside of plane
vec3d* inside_points[3];
int nInsidePointCount = 0;
vec3d* outside_points[3];
int nOutsidePointCount = 0;
vec2d* inside_tex[3];
int nInsideTexCount = 0;
vec2d* outside_tex[3];
int nOutsideTexCount = 0;
// get signed distance of each point in triangle to plane
float d0 = dist(in_tri.p[0]);
float d1 = dist(in_tri.p[1]);
float d2 = dist(in_tri.p[2]);
// determine if inside or outside point based on sign of distance
if (d0 >= 0) {
inside_points[nInsidePointCount++] = &in_tri.p[0];
inside_tex[nInsideTexCount++] = &in_tri.t[0];
}
else {
outside_points[nOutsidePointCount++] = &in_tri.p[0];
outside_tex[nOutsideTexCount++] = &in_tri.t[0];
}
if (d1 >= 0) {
inside_points[nInsidePointCount++] = &in_tri.p[1];
inside_tex[nInsideTexCount++] = &in_tri.t[1];
}
else {
outside_points[nOutsidePointCount++] = &in_tri.p[1];
outside_tex[nOutsideTexCount++] = &in_tri.t[0];
}
if (d2 >= 0) {
inside_points[nInsidePointCount++] = &in_tri.p[2];
inside_tex[nInsideTexCount++] = &in_tri.t[2];
}
else {
outside_points[nOutsidePointCount++] = &in_tri.p[2];
outside_tex[nOutsideTexCount++] = &in_tri.t[0];
}
// classify triangle points and break triangle into smaller triangles if needed
// four possible outcomes, inside points ranging from 0 to 3
if (nInsidePointCount == 0) {
// clip whole triangle since all points lie outside of plane
return 0;
}
if (nInsidePointCount == 1 && nOutsidePointCount == 2) {
// triangle should be clipped, triangle turns into smaller triangle
// copy appearance info to new triangle
out_tri1.col = in_tri.col;
out_tri1.sym = in_tri.sym;
// keep valid inside point
out_tri1.p[0] = *inside_points[0];
out_tri1.t[0] = *inside_tex[0];
// two new points are at the locations where original sides of the triangle intersect with the plane
float t;
out_tri1.p[1] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[0], t);
out_tri1.t[1].u = t * (outside_tex[0]->u - inside_tex[0]->u) + inside_tex[0]->u;
out_tri1.t[1].v = t * (outside_tex[0]->v - inside_tex[0]->v) + inside_tex[0]->v;
out_tri1.t[1].w = t * (outside_tex[0]->w - inside_tex[0]->w) + inside_tex[0]->w;
out_tri1.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[1], t);
out_tri1.t[2].u = t * (outside_tex[1]->u - inside_tex[0]->u) + inside_tex[0]->u;
out_tri1.t[2].v = t * (outside_tex[1]->v - inside_tex[0]->v) + inside_tex[0]->v;
out_tri1.t[2].w = t * (outside_tex[1]->w - inside_tex[0]->w) + inside_tex[0]->w;
return 1; // the newly formed smaller triangle
}
if (nInsidePointCount == 2 && nOutsidePointCount == 1) {
// triangle should be clipped
// since two points lie inside the plane we need to create a quad with two new triangles
// copy appearance info to new triangle
out_tri1.col = in_tri.col;
out_tri1.sym = in_tri.sym;
out_tri2.col = in_tri.col;
out_tri2.sym = in_tri.sym;
// the first triangle consists of the two inside points and a new point determined by location where
// one side of the triangle intersects with the plane
out_tri1.p[0] = *inside_points[0];
out_tri1.p[1] = *inside_points[1];
out_tri1.t[0] = *inside_tex[0];
out_tri2.t[1] = *inside_tex[1];
float t;
out_tri1.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[0], t);
out_tri1.t[2].u = t * (outside_tex[0]->u - inside_tex[0]->u) + inside_tex[0]->u;
out_tri1.t[2].v = t * (outside_tex[0]->v - inside_tex[0]->v) + inside_tex[0]->v;
out_tri1.t[2].w = t * (outside_tex[0]->w - inside_tex[0]->w) + inside_tex[0]->w;
// second triangle consists of one inside point, a new point determined by the intersection of the other side
// of the triangle and the plane, and the newly created point above
out_tri2.p[0] = *inside_points[1];
out_tri2.t[0] = *inside_tex[1];
out_tri2.p[1] = out_tri1.p[2];
out_tri2.t[1] = out_tri1.t[2];
out_tri2.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[1], *outside_points[0], t);
out_tri2.t[2].u = t * (outside_tex[0]->u - inside_tex[1]->u) + inside_tex[1]->u;
out_tri2.t[2].v = t * (outside_tex[0]->v - inside_tex[1]->v) + inside_tex[1]->v;
out_tri2.t[2].w = t * (outside_tex[0]->w - inside_tex[1]->w) + inside_tex[1]->w;
return 2;
}
if (nInsidePointCount == 3) {
// all points lie on inside of plane, allow triangle to pass through entirely
out_tri1 = in_tri;
return 1; // only returning original triangle
}
}
// code taken from "Command Line Webcam?" on Youtube by javid9x
// takes floating point of luminance value between 0 and 1 and returns the symbol and console colour combinations that represent it in white, gray, and black
CHAR_INFO GetColour(float lum)
{
short bg_col, fg_col;
wchar_t sym;
int pixel_bw = (int)(13.0f * lum);
switch (pixel_bw)
{
case 0: bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID; break;
case 1: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_QUARTER; break;
case 2: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_HALF; break;
case 3: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_THREEQUARTERS; break;
case 4: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_SOLID; break;
case 5: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_QUARTER; break;
case 6: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_HALF; break;
case 7: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_THREEQUARTERS; break;
case 8: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_SOLID; break;
case 9: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_QUARTER; break;
case 10: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_HALF; break;
case 11: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_THREEQUARTERS; break;
case 12: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_SOLID; break;
default:
bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID;
}
CHAR_INFO c;
c.Attributes = bg_col | fg_col;
c.Char.UnicodeChar = sym;
return c;
}
float* pDepthBuffer = nullptr;
public:
// two functions we must override
bool OnUserCreate() override {
// in this case we have manually created a cube, to display other shapes we can import object files
//meshCube.LoadFromObjectFile("mountains.obj");
meshCube.tris = {
// creating a cube composed of triangles, every 3 floating point values represents (x, y, z)
// SOUTH FACE
{0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f},
{0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f},
// EAST FACE
{1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f},
{1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f},
// NORTH FACE
{1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f},
{1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f},
// WEST FACE
{0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f},
{0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f},
// TOP FACE
{0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f},
{0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f},
// BOTTOM FACE
{1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f},
{1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f}
};
sprTex1 = new olcSprite(L"../ConsoleGame/Jario.spr");
// Projection matrix
matProj = Matrix_MakeProjection(90.0f, (float)ScreenHeight() / (float)ScreenWidth(), 0.1f, 1000.0f);
return true;
}
bool OnUserUpdate(float fElapsedTime) override {
// commands to move camera
if (GetKey(VK_UP).bHeld) {
vCamera.y += 8.0f * fElapsedTime;
}
if (GetKey(VK_DOWN).bHeld) {
vCamera.y -= 8.0f * fElapsedTime;
}
// do not use in FPS mode
if (GetKey(VK_LEFT).bHeld) {
vCamera.x -= 8.0f * fElapsedTime;
}
if (GetKey(VK_RIGHT).bHeld) {
vCamera.x += 8.0f * fElapsedTime;
}
vec3d vForward = Vector_Mul(vLookDir, 8.0f * fElapsedTime);
if (GetKey(L'W').bHeld) {
vCamera = Vector_Add(vCamera, vForward);
}
if (GetKey(L'S').bHeld) {
vCamera = Vector_Sub(vCamera, vForward);
}
if (GetKey(L'A').bHeld) {
fYaw -= 2.0f * fElapsedTime;
}
if (GetKey(L'D').bHeld) {
fYaw += 2.0f * fElapsedTime;
}
// perform rotations about the x and z axis, perform at different speed else we have gimbal lock
// set up rotation matrices
mat4x4 matRotZ, matRotX;
// fTheta += 1.0f * fElapsedTime; // uncomment to implement world spin
// z-axis rotation
matRotZ = Matrix_MakeRotationZ(fTheta * 0.5f);
// x-axis rotation
matRotX = Matrix_MakeRotationX(fTheta);
mat4x4 matTrans;
matTrans = Matrix_MakeTranslation(0.0f, 0.0f, 5.0f);
mat4x4 matWorld;
matWorld = Matrix_MakeIdentity();
matWorld = Matrix_MultiplyMatrix(matRotZ, matRotX);
matWorld = Matrix_MultiplyMatrix(matWorld, matTrans);
vec3d vUp = { 0, 1, 0 };
vec3d vTarget = {0, 0, 1};
mat4x4 matCameraRot = Matrix_MakeRotationY(fYaw); // rotate by "yaw" radians
vLookDir = Matrix_MultiplyVector(matCameraRot, vTarget); // unit vector rotated around the origin
vTarget = Vector_Add(vCamera, vLookDir); // offset to current camera's location
mat4x4 matCamera = Matrix_PointAt(vCamera, vTarget, vUp);
// make view matrix from camera
mat4x4 matView = Matrix_QuickInverse(matCamera);
// store triangles so they can be rasterized later
vector<triangle> vecTrianglesToRaster;
// draw triangles
for (auto tri : meshCube.tris) {
// the objects exist in 3d space but we are in a 2d screen, need to use projection
triangle triProjected, triTransformed, triViewed;
// multiply each point of the triangle by the world matrix
triTransformed.p[0] = Matrix_MultiplyVector(matWorld, tri.p[0]);
triTransformed.p[1] = Matrix_MultiplyVector(matWorld, tri.p[1]);
triTransformed.p[2] = Matrix_MultiplyVector(matWorld, tri.p[2]);
triTransformed.t[0] = tri.t[0];
triTransformed.t[1] = tri.t[1];
triTransformed.t[2] = tri.t[2];
// calculate triangle's
vec3d normal, line1, line2;
line1 = Vector_Sub(triTransformed.p[1], triTransformed.p[0]);
line2 = Vector_Sub(triTransformed.p[2], triTransformed.p[0]);
// take cross product of lines to get normal to triangle surface
normal = Vector_CrossProduct(line1, line2);
// need to normalize normal
normal = Vector_Normalize(normal);
// get ray from triangle to camera
vec3d vCameraRay = Vector_Sub(triTransformed.p[0], vCamera);
// we only want to project the triangles if we can "see" them, that is the ray is aligned with normal
// calculate dot product between camera's field of view line and the normal and determine whether it is less than zero
if (Vector_DotProduct(normal, vCameraRay) < 0.0f) {
// illuminate the triangle
vec3d light_direction = { 0.0f, 1.0f, -1.0f }; // all the light is coming from a single direction
light_direction = Vector_Normalize(light_direction);
// determine alignment of light direction and triangle surface normal
float dotProduct = max(0.1f, Vector_DotProduct(light_direction, normal));
// choose console colours as required
CHAR_INFO c = GetColour(dotProduct);
triTransformed.col = c.Attributes;
triTransformed.sym = c.Char.UnicodeChar;
// convert world space to view space
triViewed.p[0] = Matrix_MultiplyVector(matView, triTransformed.p[0]);
triViewed.p[1] = Matrix_MultiplyVector(matView, triTransformed.p[1]);
triViewed.p[2] = Matrix_MultiplyVector(matView, triTransformed.p[2]);
triViewed.col = triTransformed.col;
triViewed.sym = triTransformed.sym;
triViewed.t[0] = triTransformed.t[0];
triViewed.t[1] = triTransformed.t[1];
triViewed.t[2] = triTransformed.t[2];
// clip viewed triangle against near plane to form up to two additional triangles
int nClippedTriangles = 0;
triangle clipped[2];
// first two parameters refer to a point on the near-plane (just in-front of the camera on z-axis)
// and the normal straight along the z-axis
nClippedTriangles = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.1f }, { 0.0f, 0.0f, 1.0f }, triViewed, clipped[0], clipped[1]);
for (int n = 0; n < nClippedTriangles; n++) {
// project triangles from 3d into 2d
triProjected.p[0] = Matrix_MultiplyVector(matProj, clipped[n].p[0]);
triProjected.p[1] = Matrix_MultiplyVector(matProj, clipped[n].p[1]);
triProjected.p[2] = Matrix_MultiplyVector(matProj, clipped[n].p[2]);
triProjected.col = clipped[n].col;
triProjected.sym = clipped[n].sym;
triProjected.t[0] = clipped[n].t[0];
triProjected.t[1] = clipped[n].t[1];
triProjected.t[2] = clipped[n].t[2];
triProjected.t[0].u = triProjected.t[0].u / triProjected.p[0].w;
triProjected.t[1].u = triProjected.t[1].u / triProjected.p[1].w;
triProjected.t[2].u = triProjected.t[2].u / triProjected.p[2].w;
triProjected.t[0].v = triProjected.t[0].v / triProjected.p[0].w;
triProjected.t[1].v = triProjected.t[1].v / triProjected.p[1].w;
triProjected.t[2].v = triProjected.t[2].v / triProjected.p[2].w;
triProjected.t[0].w = 1.0f / triProjected.p[0].w;
triProjected.t[1].w = 1.0f / triProjected.p[1].w;
triProjected.t[2].w = 1.0f / triProjected.p[2].w;
// scale into view
triProjected.p[0] = Vector_Div(triProjected.p[0], triProjected.p[0].w);
triProjected.p[1] = Vector_Div(triProjected.p[1], triProjected.p[1].w);
triProjected.p[2] = Vector_Div(triProjected.p[2], triProjected.p[2].w);
// X/Y are inverted so put them back
triProjected.p[0].x *= -1.0f;
triProjected.p[1].x *= -1.0f;
triProjected.p[2].x *= -1.0f;
triProjected.p[0].y *= -1.0f;
triProjected.p[1].y *= -1.0f;
triProjected.p[2].y *= -1.0f;
// offset vertices into visible normalized space
vec3d vOffsetView = { 1, 1, 0 };
triProjected.p[0] = Vector_Add(triProjected.p[0], vOffsetView);
triProjected.p[1] = Vector_Add(triProjected.p[1], vOffsetView);
triProjected.p[2] = Vector_Add(triProjected.p[2], vOffsetView);
triProjected.p[0].x *= 0.5f * (float)ScreenWidth();
triProjected.p[0].y *= 0.5f * (float)ScreenHeight();
triProjected.p[1].x *= 0.5f * (float)ScreenWidth();
triProjected.p[1].y *= 0.5f * (float)ScreenHeight();
triProjected.p[2].x *= 0.5f * (float)ScreenWidth();
triProjected.p[2].y *= 0.5f * (float)ScreenHeight();
// store triangles for sorting
vecTrianglesToRaster.push_back(triProjected);
//// rasterize triangle
//FillTriangle(triProjected.p[0].x, triProjected.p[0].y,
// triProjected.p[1].x, triProjected.p[1].y,
// triProjected.p[2].x, triProjected.p[2].y,
// triProjected.sym, triProjected.col);
// useful for debugging, determine wireframe outline
/*DrawTriangle(triProjected.p[0].x, triProjected.p[0].y,
triProjected.p[1].x, triProjected.p[1].y,
triProjected.p[2].x, triProjected.p[2].y,
PIXEL_SOLID, FG_WHITE); */
}
}
}
// sort triangles from back to front since we are drawing triangles closer to camera on top of triangles further away
//sort(vecTrianglesToRaster.begin(), vecTrianglesToRaster.end(), [](triangle& t1, triangle& t2) {
// // get the midpoint z-values of both triangles
// float z1 = (t1.p[0].z + t1.p[1].z + t1.p[2].z) / 3.0f;
// float z2 = (t2.p[0].z + t2.p[1].z + t2.p[2].z) / 3.0f;
// return z1 > z2;
//});
// clear screen
Fill(0, 0, ScreenWidth(), ScreenHeight(), PIXEL_SOLID, FG_BLACK);
// clear depth buffer
for (int i = 0; i < ScreenWidth() * ScreenHeight(); i++) {
pDepthBuffer[i] = 0.0f;
}
// rasterize triangles
for (auto& triToRaster : vecTrianglesToRaster) {
// clip triangles against all four screen edges to yield many triangles
triangle clipped[2];
list<triangle> listTriangles; // create a list to ensure we only test new triangles generated against planes
// Add initial triangle
listTriangles.push_back(triToRaster);
int nNewTriangles = 1;
for (int p = 0; p < 4; p++)
{
int nTrisToAdd = 0;
while (nNewTriangles > 0)
{
// Take triangle from front of queue
triangle test = listTriangles.front();
listTriangles.pop_front();
nNewTriangles--;
// Clip it against a plane. We only need to test each
// subsequent plane, against subsequent new triangles
// as all triangles after a plane clip are guaranteed
// to lie on the inside of the plane.
switch (p)
{
// all four screen edges
case 0: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, test, clipped[0], clipped[1]); break;
case 1: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, (float)ScreenHeight() - 1, 0.0f }, { 0.0f, -1.0f, 0.0f }, test, clipped[0], clipped[1]); break;
case 2: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f }, test, clipped[0], clipped[1]); break;
case 3: nTrisToAdd = Triangle_ClipAgainstPlane({ (float)ScreenWidth() - 1, 0.0f, 0.0f }, { -1.0f, 0.0f, 0.0f }, test, clipped[0], clipped[1]); break;
}
// Clipping may yield a variable number of triangles, so
// add these new ones to the back of the queue for subsequent
// clipping against next planes
for (int w = 0; w < nTrisToAdd; w++)
listTriangles.push_back(clipped[w]);
}
nNewTriangles = listTriangles.size();
}
// Draw the transformed, viewed, clipped, projected, and sorted triangles
for (auto& t : listTriangles)
{
TexturedTriangle(t.p[0].x, t.p[0].y, t.t[0].u, t.t[0].v, t.t[0].w,
t.p[1].x, t.p[1].y, t.t[1].u, t.t[1].v, t.t[1].w,
t.p[2].x, t.p[2].y, t.t[2].u, t.t[2].v, t.t[2].w, sprTex1);
// FillTriangle(t.p[0].x, t.p[0].y, t.p[1].x, t.p[1].y, t.p[2].x, t.p[2].y, t.sym, t.col);
DrawTriangle(t.p[0].x, t.p[0].y, t.p[1].x, t.p[1].y, t.p[2].x, t.p[2].y, PIXEL_SOLID, FG_WHITE); // if you would like to see the wireframe
}
}
return true;
}
void TexturedTriangle(int x1, int y1, float u1, float v1, float w1,
int x2, int y2, float u2, float v2, float w2,
int x3, int y3, float u3, float v3, float w3,
olcSprite* tex) {
// sort x-y coordinates from high to low y values
if (y2 < y1) {
swap(y1, y2);
swap(x1, x2);
swap(u1, u2);
swap(v1, v2);
swap(w1, w2);
}
if (y3 < y1) {
swap(y1, y3);
swap(x1, x3);
swap(u1, u3);
swap(v1, v3);
swap(w1, w3);
}
if (y3 < y2) {
swap(y2, y3);
swap(x2, x3);
swap(u2, u3);
swap(v2, v3);
swap(w2, w3);
}
// gradient and utility information
int dy1 = y2 - y1;
int dx1 = x2 - x1;
float dv1 = v2 - v1;
float du1 = u2 - u1;
float dw1 = w2 - w1;
int dy2 = y3 - y1;
int dx2 = x3 - x1;
float dv2 = v3 - v1;
float du2 = u3 - u1;
float dw2 = w3 - w1;
float tex_u, tex_v, tex_w;
float dax_step = 0, dbx_step = 0, du1_step = 0, dv1_step = 0, du2_step = 0, dv2_step = 0, dw1_step = 0, dw2_step = 0;
if (dy1 != 0) {
dax_step = dx1 / (float)abs(dy1);
du1_step = du1 / (float)abs(dy1);
dv1_step = dv1 / (float)abs(dy1);
dw1_step = dw1 / (float)abs(dy1);
}
if (dy2 != 0) {
dbx_step = dx2 / (float)abs(dy2);
du2_step = du2 / (float)abs(dy2);
dv2_step = dv2 / (float)abs(dy2);
dw2_step = dw2 / (float)abs(dy2);
}
if (dy1 != 0) {
for (int i = y2; i <= y3; i++) {
int ax = x2 + (float)(i - y2) * dax_step;
int bx = x1 + (float)(i - y1) * dbx_step;
// sending texture coordinates
// start u, v
float tex_su = u2 + (float)(i - y2) * du1_step;
float tex_sv = v2 + (float)(i - y2) * dv1_step;
float tex_sw = w2 + (float)(i - y2) * dw1_step;
// end u, v
float tex_eu = u1 + (float)(i - y1) * du2_step;
float tex_ev = v1 + (float)(i - y1) * dv2_step;
float tex_ew = w1 + (float)(i - y1) * dw2_step;
if (ax > bx) {
swap(ax, bx);
swap(tex_su, tex_eu);
swap(tex_sv, tex_ev);
swap(tex_sw, tex_ew);
}
tex_u = tex_su;
tex_v = tex_sv;
tex_w = tex_sw;
float tstep = 1.0f / ((float)(bx - ax));
float t = 0.0f;
// sampling the texture: each one of these locations represents a pixel on the screen
for (int j = ax; j < bx; j++)
{
tex_u = (1.0f - t) * tex_su + t * tex_eu;
tex_v = (1.0f - t) * tex_sv + t * tex_ev;
tex_w = (1.0f - t) * tex_sw + t * tex_ew;
if (tex_w > pDepthBuffer[i * ScreenWidth() + j])
{
// draw a single pixel
Draw(j, i, tex->SampleGlyph(tex_u / tex_w, tex_v / tex_w), tex->SampleColour(tex_u / tex_w, tex_v / tex_w));
pDepthBuffer[i * ScreenWidth() + j] = tex_w;
}
t += tstep;
}
}
}
}
};
int main()
{
engine3D demo;
if (demo.ConstructConsole(300, 200, 2, 2)) { // width, height, fontw, fonth
demo.Start();
}
return 0;
}