Docker containers for the Brainery RAG system.
| Container | Port | Purpose |
|---|---|---|
| crawl4ai | 9100 | Web scraping |
| yt-dlp-server | 9101 | YouTube transcripts |
| whisper-server | 9102 | Audio transcription |
| anythingllm | 9103 | RAG database |
Port range 9100-9103 is workflow-ordered and uses IANA unassigned space to minimize conflicts. Default ports work out-of-box; optional .env override available.
docker-compose up -dVerify containers are running:
curl http://localhost:9100/health # crawl4ai
curl http://localhost:9101/health # yt-dlp-server
curl http://localhost:9102/health # whisper-server
curl http://localhost:9103/api/ping # anythingllmBrainery uses a mixed strategy to optimize performance and persistence:
- anythingllm-storage: RAG database with documents and embeddings
- whisper-models: Pre-downloaded Whisper models (~150MB)
Location:
- Windows:
C:\ProgramData\Docker\volumes\ - Linux:
/var/lib/docker/volumes/
- crawl4ai: Web scraping cache (512MB tmpfs)
- yt-dlp-server: Temporary video cache (1GB tmpfs)
Advantages:
- ✅ High performance (RAM)
- ✅ No disk I/O for caches
- ✅ RAG database preserved across restarts
- ✅ Whisper models not re-downloaded
RAM requirements: ~1.5GB dedicated for caches + models in execution
Default ports (9100-9103) work for most users.
If you have a conflict, create a .env file:
cp .env.example .env
# Edit ports in .env file
docker-compose up -dAll images are published on Docker Hub:
tapiocapioca/crawl4ai:latesttapiocapioca/yt-dlp-server:latesttapiocapioca/whisper-server:latesttapiocapioca/anythingllm:latest
- Installation Guide - Step-by-step setup
- Usage Examples - Practical examples
Uses Semantic Versioning: v1.0.0, v1.1.0, etc.
- brainery-containers: This repository (Docker containers)
- brainery: Main Claude Code skill
MIT