Skip to content
47 changes: 10 additions & 37 deletions source/calculus/source/03-AD/02.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -51,43 +51,16 @@ Notice that this is obtained by writing the tangent line to <m>f(x)</m> at <m>(a
<task><p>Sketch the tangent line <m>L(x)</m> on the same plane as the graph of <m>\ln(x)</m>. What do you notice?
</p>
<figure>
<image width="50%" xml:id="graph-tangent-line-plane-ln">
<latex-image>
\begin{minipage}{\textwidth}
\begin{center}
\begin{tikzpicture}[scale=0.9]
\begin{axis}[
axis lines=middle,
grid=major,
xmin=0, xmax=5,
ymin=-2, ymax=2,
% xtick={0,10,...,80},
% ytick={0,10,...,50},
% yticklabels={0, 0.01, 0.02, 0.03, 0.04, 0.05},
tick style={thick},
% x label style={at={(axis description cs:1,0.7)}},
% y label style={at={(axis description cs:0.4,1)}},
ylabel=$y$,
xlabel=$x$,
]
\addplot[domain=0.1:5, blue, ultra thick] {ln(x)} node [pos=0.8,above left , ultra thick] {$\boldsymbol{\ln(x)}$};
% \addplot [only marks, blue] table {
% 40 20
% };
% \addplot[only marks, color=blue, nodes near coords={$(40,20)$}] coordinates {(30,20)};
% \addplot[domain=20:70, black, thick] {(x-40)+20} node [pos=0.6, below right, ultra thick] {$\boldsymbol{L(x)}$};
% \addplot [only marks, black] table {
% 20 0
% };
% \addplot[only marks, color=black, nodes near coords={$(20,0)$}] coordinates {(30,0)};
\end{axis}
\end{tikzpicture}
\end{center}
\end{minipage}
</latex-image>
</image>
<caption>The graph of <m> \ln(x)</m></caption>
</figure>
<image width="50%" xml:id="graph-tangent-line-plane-ln">
<sageplot>
x = var('x')
f = ln(x)
p = plot(f,(x,0.1,5), gridlines=True, axes_labels=('$x$','$y$'), thickness=2, aspect_ratio = 1.25)
p
</sageplot>
</image>
<caption>The graph of <m> \ln(x)</m></caption>
</figure>
</task>
</activity>

Expand Down
87 changes: 56 additions & 31 deletions source/calculus/source/03-AD/04.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -26,30 +26,15 @@
</p>

<figure xml:id="height-function">
<image width="50%" xml:id="graph-parabolic-height-function">
<latex-image>
\begin{tikzpicture}[scale=1]
\begin{axis}[
samples = 900,
axis lines=middle,
grid=major,
% xmin=0, xmax=4,
ymin=0, ymax=70,
% xtick={0,0.5,...,4},
% ytick={-2,-1,...,10},
% tick style={thick},
% x label style={at={(axis description cs:1,0.7)}},
% y label style={at={(axis description cs:0.4,1)}},
ylabel=$s(t)$,
xlabel=$t$,
]
\addplot[domain=0:3, blue, thick] {-16*x^2+32*x+48};
\end{axis}
\end{tikzpicture}

</latex-image>
</image>
<caption>The graph of <m>s(t) = -16t^2 + 32t + 48</m></caption>
<image width="50%" xml:id="graph-parabolic-height-function">
<sageplot>
x = var('x')
f = -16*x^2+32*x+48
p = plot(f,(x,0,3), gridlines=True, axes_labels=('$t$','$s(t)$'), thickness=2, aspect_ratio = .05)
p
</sageplot>
</image>
<caption>The graph of <m>s(t) = -16t^2 + 32t + 48</m></caption>
</figure>
</example>

Expand Down Expand Up @@ -101,22 +86,62 @@
<p>For each of the following figures, decide where the global extrema are located.</p>
</introduction>
<task>
<figure xml:id="figure-evt-int">
<image width="25%" source="evt_int.png" />
<!-- <caption>A.</caption> -->
<figure xml:id="figure-evt-int">
<image width="25%">
<sageplot>
x = var('x')
f = sin(x)
ticks = [[-pi/2, 0, pi/2, pi, 3*pi/2, 2*pi, 5*pi/2],[-1.5,-1,-0.5,0,0.5,1,1.5]]
p = plot(f,(x,0,2*pi), xmin = -pi/2, xmax = 5*pi/2, ymin = -1.5, ymax=1.5, ticks=ticks, tick_formatter=[pi,None], thickness=2, gridlines=True, aspect_ratio=1.5)
c1 = circle((0,0),0.05,fill=True)
c2 = circle((2*pi,0),0.05,fill=True)
p+c1+c2
</sageplot>
</image>
<!-- <caption>A.</caption> -->
</figure>
</task>
</task>
<task><figure xml:id="figure-evt-endpoints">
<image width="25%" source="evt_endpts.png" />
<image width="25%">
<sageplot>
x=var('x')
f(x) = exp(-x) + 1
p = plot(f,(x,0,3), ymin = -1, ymax = 3, gridlines=True, thickness=2, aspect_ratio=1)
q = plot(4,(x,-1,4), ymin=-1, ymax=3, gridlines=True, thickness=2, aspect_ratio=1)
c1 = circle((0,f(0)), 0.05, fill=True)
c2 = circle((3,f(3)),0.05, fill=True)
p+c1+c2+q
</sageplot>
</image>
<!-- <caption>B.</caption> -->
</figure></task>
<task><figure xml:id="figure-evt-mixed">
<image width="25%" source="evt_mixed.png" />
<image width="25%">
<sageplot>
x=var('x')
f(x) = -x^3+2*x^2
c1 = circle((-0.5,f(-0.5)),0.05,fill=True)
c2 = circle((2.2,f(2.2)),0.05,fill=True)
p = plot(f,(x,-0.5,2.2),ymin=-2,ymax=2,thickness=2,gridlines=True,aspect_ratio=1)
q = plot(3,(x,-1,3),ymin=-2,ymax=2,aspect_ratio=1)
c1+c2+p+q
</sageplot>
</image>
<!-- <caption>C.</caption> -->
</figure></task>
<task>
<figure xml:id="figure-evt-mixed2">
<image width="25%" source="evt_mixed2.png" />
<image width="25%">
<sageplot>
x=var('x')
f(x) = abs(-(x-1)^(1/3))
c1 = circle((0,f(0)),0.05,fill=True)
c2 = circle((3,f(3)),0.05,fill=True)
p = plot(f,(x,0,3),ymin=-1,ymax=2,thickness=2,gridlines=True,aspect_ratio=1)
q = plot(3,(x,-1,3.5),ymin=-1,ymax=2,aspect_ratio=1)
c1+c2+p+q
</sageplot>
</image>
<!-- <caption>D.</caption> -->
</figure>
</task>
Expand Down
113 changes: 106 additions & 7 deletions source/calculus/source/03-AD/06.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,36 @@

<figure xml:id="concavity-1">
<caption>Three increasing functions</caption>
<image width="100%" source="concavity-1" />
<sidebyside widths = "30% 30% 30%">
<image xml:id="concavity-1-down">
<sageplot>
x = var('x')
f = 2*exp(4*x-3)
ticks=[[],[]]
p = plot(f,(x,.2,1), xmin = -10, xmax = 1, ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.2)
p
</sageplot>
</image>
<image xml:id="concavity-1-none">
<sageplot>
x = var('x')
f = x+.75
ticks=[[],[]]
p = plot(f,(x,.05,1), xmin = -10, xmax = 1, ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25)
p
</sageplot>
</image>
<image xml:id="concavity-1-up">
<sageplot>
x = var('x')
f = (x-1.5)^3+2.5
ticks=[[],[]]
p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25)
p
</sageplot>
</image>
</sidebyside>

</figure>
</introduction>
<task>
Expand Down Expand Up @@ -91,7 +120,35 @@
</p>
<figure xml:id="concavity-2" permid="PJf">
<caption>From left to right, three functions that are all decreasing.</caption>
<image width="100%" source="concavity-2" />
<sidebyside widths="30% 30% 30%">
<image xml:id="concavity-2-up">
<sageplot>
x = var('x')
f = -(x-1.5)^3+.5
ticks=[[],[]]
p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25)
p
</sageplot>
</image>
<image xml:id="concavity-2-none">
<sageplot>
x = var('x')
f = -2*x + 3
ticks = [[],[]]
p = plot(f, (x,.25, 1.25), ymin = -1, ymax = 3, gridlines=True, thickness=2, ticks=ticks, aspect_ratio = 0.25)
p
</sageplot>
</image>
<image xml:id="concavity-2-down">
<sageplot>
x = var('x')
f = -(x)^3+2.5
ticks=[[],[]]
p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25)
p
</sageplot>
</image>
</sidebyside>
</figure>

</introduction>
Expand Down Expand Up @@ -148,12 +205,54 @@
<activity xml:id="activity-derivative-concavity3a">
<statement><p>Look at in <xref ref="concavity-3"/>. Which curve is concave up? Which one is concave down? Why? Try to explain using the graph!</p>

<figure xml:id="concavity-3" permid="vQo">
<caption>Two concavity, which is which? </caption>
<image width="90%" source="concavity-3" />
</figure>
<figure xml:id="concavity-3" permid="vQo">
<caption>Two concavities, which is which? </caption>
<sidebyside widths="45% 45%">
<image>
<sageplot>
x = var('x')
f(x) = (x-1)^2 + 1
line1 = -3*(x+0.5)+f(-0.5)
line2 = -1*(x-0.5)+f(0.5)
line3 = (x-1.5)+f(1.5)
line4 = 3*(x-2.5)+f(2.5)
p1 = plot(f,(x,-1,3), ymin = 0, ymax = 6, gridlines=True,thickness=2, aspect_ratio=1)
p2 = plot(line1,(x,-.75,-.25), color="green", thickness=2.5)
p3 = plot(line2,(x,.25,.75), color="green", thickness=2.5)
p4 = plot(line3,(x,1.25,1.75), color="green", thickness=2.5)
p5 = plot(line4,(x,2.25,2.75), color="green", thickness=2.5)
c1 = circle((-.5,f(-.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic")
c2 = circle((.5,f(.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic")
c3 = circle((1.5,f(1.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic")
c4 = circle((2.5,f(2.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic")
p1+p2+p3+p4+p5+c1+c2+c3+c4
</sageplot>
</image>
<image>
<sageplot>
x = var('x')
f(x) = -(x-1)^2 +2
line1 = 3*(x+0.5)+f(-0.5)
line2 = 1*(x-0.5)+f(0.5)
line3 = -(x-1.5)+f(1.5)
line4 = -3*(x-2.5)+f(2.5)
p1 = plot(f,(x,-1,3), ymin = -3, ymax = 3, gridlines=True,thickness=2, aspect_ratio=1)
p2 = plot(line1,(x,-.75,-.25), color="green", thickness=2.5)
p3 = plot(line2,(x,.25,.75), color="green", thickness=2.5)
p4 = plot(line3,(x,1.25,1.75), color="green", thickness=2.5)
p5 = plot(line4,(x,2.25,2.75), color="green", thickness=2.5)
c1 = circle((-.5,f(-.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic")
c2 = circle((.5,f(.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic")
c3 = circle((1.5,f(1.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic")
c4 = circle((2.5,f(2.5)),0.1,fill=True,facecolor="red", aspect_ratio="automatic")
p1+p2+p3+p4+p5+c1+c2+c3+c4
</sageplot>
</image>
</sidebyside>

</figure>

</statement></activity>
</statement></activity>

<definition xml:id="concavity-and-first-derivative" permid="hcP">
<statement>
Expand Down
24 changes: 20 additions & 4 deletions source/calculus/source/03-AD/07.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -21,10 +21,18 @@
Which of the following features best describe the curve graphed below? </p>


<figure xml:id="dec-cdown">
<figure xml:id="dec-cdown">
<!-- <caption>A curve</caption> -->
<image width="30%" source="dec-cdown.png" />
</figure>
<image width="30%">
<sageplot>
x = var('x')
f = -(x)^3+2.5
ticks=[[],[]]
p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25)
p
</sageplot>
</image>
</figure>
</introduction>


Expand All @@ -47,7 +55,15 @@

<figure xml:id="inc-cdown">
<!-- <caption>A curve</caption> -->
<image width="30%" source="inc-cdown.png" />
<image width="30%">
<sageplot>
x = var('x')
f = (x-1.5)^3+2.5
ticks=[[],[]]
p = plot(f,(x,.25,1.25), ymin = -1, ymax = 3, gridlines=True,thickness=2, ticks=ticks, aspect_ratio=.25)
p
</sageplot>
</image>
</figure>


Expand Down
Loading
Loading