Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

x86 handle allocation failures #5489

Merged
merged 2 commits into from
Jun 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion src/layer/arm/convolutiondepthwise_arm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1547,7 +1547,6 @@ int ConvolutionDepthWise_arm::forward_int8_arm(const Mat& bottom_blob, Mat& top_
return -100;
}

#pragma omp parallel for num_threads(opt.num_threads)
for (int g = 0; g < group; g++)
{
const Mat bottom_blob_bordered_g = bottom_blob_bordered_unpacked.channel_range(channels_g * g / g_elempack, channels_g / g_elempack);
Expand Down
4 changes: 4 additions & 0 deletions src/layer/x86/concat_x86.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -350,6 +350,8 @@ int Concat_x86::forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>&
if (elempack < out_elempack)
{
convert_packing(top_blob_unpacked, top_blob, out_elempack, opt);
if (top_blob.empty())
return -100;
}
}

Expand Down Expand Up @@ -685,6 +687,8 @@ int Concat_x86::forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>&
if (elempack < out_elempack)
{
convert_packing(top_blob_unpacked, top_blob, out_elempack, opt);
if (top_blob.empty())
return -100;
}
}

Expand Down
36 changes: 33 additions & 3 deletions src/layer/x86/convolution_3x3_winograd.h
Original file line number Diff line number Diff line change
Expand Up @@ -3135,7 +3135,7 @@ static inline void conv3x3s1_winograd23_transform_output_tile(const Mat& top_til
}
}

static void conv3x3s1_winograd23(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, const Mat& bias, int nT, const Option& opt)
static int conv3x3s1_winograd23(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, const Mat& bias, int nT, const Option& opt)
{
int outw = top_blob.w;
int outh = top_blob.h;
Expand All @@ -3162,12 +3162,16 @@ static void conv3x3s1_winograd23(const Mat& bottom_blob, Mat& top_blob, const Ma
// NCNN_LOGE("TILE M/N/K = %d %d %d -> %d %d %d", M, N, K, TILE_M, TILE_N, TILE_K);

Mat BT(TILE_K * TILE_N, B, (K + TILE_K - 1) / TILE_K, (N + TILE_N - 1) / TILE_N, 4u, opt.workspace_allocator);
if (BT.empty())
return -100;

const int nn_NK = nn_N * nn_K;

if (nT > 1 && nn_NK < nT)
{
Mat B_tile(TILE_N * B * TILE_K, 4u, opt.workspace_allocator);
if (B_tile.empty())
return -100;

for (int ppjk = 0; ppjk < nn_NK; ppjk++)
{
Expand All @@ -3191,6 +3195,8 @@ static void conv3x3s1_winograd23(const Mat& bottom_blob, Mat& top_blob, const Ma
else
{
Mat B_tileX(TILE_N * B * TILE_K, 1, nT, 4u, opt.workspace_allocator);
if (B_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppjk = 0; ppjk < nn_NK; ppjk++)
Expand All @@ -3216,6 +3222,8 @@ static void conv3x3s1_winograd23(const Mat& bottom_blob, Mat& top_blob, const Ma
}

Mat top_tileX(TILE_N * B * TILE_M, 1, nT, 4u, opt.workspace_allocator);
if (top_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppj = 0; ppj < nn_M; ppj++)
Expand Down Expand Up @@ -3245,6 +3253,8 @@ static void conv3x3s1_winograd23(const Mat& bottom_blob, Mat& top_blob, const Ma
conv3x3s1_winograd23_transform_output_tile(top_tile, top_blob, bias, i, max_ii, j, max_jj);
}
}

return 0;
}

static inline void conv3x3s1_winograd43_transform_kernel_tile(const Mat& kernel, Mat& A, int inch, int i, int max_ii, int k, int max_kk)
Expand Down Expand Up @@ -4977,7 +4987,7 @@ static inline void conv3x3s1_winograd43_transform_output_tile(const Mat& top_til
}
}

static void conv3x3s1_winograd43(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, const Mat& bias, int nT, const Option& opt)
static int conv3x3s1_winograd43(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, const Mat& bias, int nT, const Option& opt)
{
int outw = top_blob.w;
int outh = top_blob.h;
Expand All @@ -5004,12 +5014,16 @@ static void conv3x3s1_winograd43(const Mat& bottom_blob, Mat& top_blob, const Ma
// NCNN_LOGE("TILE M/N/K = %d %d %d -> %d %d %d", M, N, K, TILE_M, TILE_N, TILE_K);

Mat BT(TILE_K * TILE_N, B, (K + TILE_K - 1) / TILE_K, (N + TILE_N - 1) / TILE_N, 4u, opt.workspace_allocator);
if (BT.empty())
return -100;

const int nn_NK = nn_N * nn_K;

if (nT > 1 && nn_NK < nT)
{
Mat B_tile(TILE_N * B * TILE_K, 4u, opt.workspace_allocator);
if (B_tile.empty())
return -100;

for (int ppjk = 0; ppjk < nn_NK; ppjk++)
{
Expand All @@ -5033,6 +5047,8 @@ static void conv3x3s1_winograd43(const Mat& bottom_blob, Mat& top_blob, const Ma
else
{
Mat B_tileX(TILE_N * B * TILE_K, 1, nT, 4u, opt.workspace_allocator);
if (B_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppjk = 0; ppjk < nn_NK; ppjk++)
Expand All @@ -5058,6 +5074,8 @@ static void conv3x3s1_winograd43(const Mat& bottom_blob, Mat& top_blob, const Ma
}

Mat top_tileX(TILE_N * B * TILE_M, 1, nT, 4u, opt.workspace_allocator);
if (top_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppj = 0; ppj < nn_M; ppj++)
Expand Down Expand Up @@ -5087,6 +5105,8 @@ static void conv3x3s1_winograd43(const Mat& bottom_blob, Mat& top_blob, const Ma
conv3x3s1_winograd43_transform_output_tile(top_tile, top_blob, bias, i, max_ii, j, max_jj);
}
}

return 0;
}

static inline void conv3x3s1_winograd63_transform_kernel_tile(const Mat& kernel, Mat& A, int inch, int i, int max_ii, int k, int max_kk)
Expand Down Expand Up @@ -7267,7 +7287,7 @@ static inline void conv3x3s1_winograd63_transform_output_tile(const Mat& top_til
}
}

static void conv3x3s1_winograd63(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, const Mat& bias, int nT, const Option& opt)
static int conv3x3s1_winograd63(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, const Mat& bias, int nT, const Option& opt)
{
int outw = top_blob.w;
int outh = top_blob.h;
Expand All @@ -7294,12 +7314,16 @@ static void conv3x3s1_winograd63(const Mat& bottom_blob, Mat& top_blob, const Ma
// NCNN_LOGE("TILE M/N/K = %d %d %d -> %d %d %d", M, N, K, TILE_M, TILE_N, TILE_K);

Mat BT(TILE_K * TILE_N, B, (K + TILE_K - 1) / TILE_K, (N + TILE_N - 1) / TILE_N, 4u, opt.workspace_allocator);
if (BT.empty())
return -100;

const int nn_NK = nn_N * nn_K;

if (nT > 1 && nn_NK < nT)
{
Mat B_tile(TILE_N * B * TILE_K, 4u, opt.workspace_allocator);
if (B_tile.empty())
return -100;

for (int ppjk = 0; ppjk < nn_NK; ppjk++)
{
Expand All @@ -7323,6 +7347,8 @@ static void conv3x3s1_winograd63(const Mat& bottom_blob, Mat& top_blob, const Ma
else
{
Mat B_tileX(TILE_N * B * TILE_K, 1, nT, 4u, opt.workspace_allocator);
if (B_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppjk = 0; ppjk < nn_NK; ppjk++)
Expand All @@ -7348,6 +7374,8 @@ static void conv3x3s1_winograd63(const Mat& bottom_blob, Mat& top_blob, const Ma
}

Mat top_tileX(TILE_N * B * TILE_M, 1, nT, 4u, opt.workspace_allocator);
if (top_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppj = 0; ppj < nn_M; ppj++)
Expand Down Expand Up @@ -7377,4 +7405,6 @@ static void conv3x3s1_winograd63(const Mat& bottom_blob, Mat& top_blob, const Ma
conv3x3s1_winograd63_transform_output_tile(top_tile, top_blob, bias, i, max_ii, j, max_jj);
}
}

return 0;
}
64 changes: 38 additions & 26 deletions src/layer/x86/convolution_3x3_winograd_int8.h
Original file line number Diff line number Diff line change
Expand Up @@ -13,25 +13,25 @@
// specific language governing permissions and limitations under the License.

#if NCNN_RUNTIME_CPU && NCNN_AVX512VNNI && __AVX512F__ && !__AVX512VNNI__
void conv3x3s1_winograd23_int8_avx512vnni(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
void conv3x3s1_winograd43_int8_avx512vnni(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
int conv3x3s1_winograd23_int8_avx512vnni(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
int conv3x3s1_winograd43_int8_avx512vnni(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
#endif

#if NCNN_RUNTIME_CPU && NCNN_AVXVNNI && __AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
void conv3x3s1_winograd23_int8_avxvnni(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
void conv3x3s1_winograd43_int8_avxvnni(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
int conv3x3s1_winograd23_int8_avxvnni(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
int conv3x3s1_winograd43_int8_avxvnni(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
#endif

#if NCNN_RUNTIME_CPU && NCNN_AVX2 && __AVX__ && !__AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
void conv3x3s1_winograd23_transform_kernel_int8_avx2(const Mat& kernel, Mat& AT, int inch, int outch, const Option& opt);
void conv3x3s1_winograd23_int8_avx2(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
int conv3x3s1_winograd23_int8_avx2(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
void conv3x3s1_winograd43_transform_kernel_int8_avx2(const Mat& kernel, Mat& AT, int inch, int outch, const Option& opt);
void conv3x3s1_winograd43_int8_avx2(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
int conv3x3s1_winograd43_int8_avx2(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
#endif

#if NCNN_RUNTIME_CPU && NCNN_XOP && __SSE2__ && !__XOP__ && !__AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
void conv3x3s1_winograd23_int8_xop(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
void conv3x3s1_winograd43_int8_xop(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
int conv3x3s1_winograd23_int8_xop(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
int conv3x3s1_winograd43_int8_xop(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt);
#endif

static void pack_A_tile_int8(const Mat& A, Mat& AT, int batch, int max_ii, int max_kk)
Expand Down Expand Up @@ -4424,37 +4424,33 @@ static inline void conv3x3s1_winograd23_transform_output_tile_int8(const Mat& to
}
}

static void conv3x3s1_winograd23_int8(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt)
static int conv3x3s1_winograd23_int8(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt)
{
#if NCNN_RUNTIME_CPU && NCNN_AVX512VNNI && __AVX512F__ && !__AVX512VNNI__
if (ncnn::cpu_support_x86_avx512_vnni())
{
conv3x3s1_winograd23_int8_avx512vnni(bottom_blob, top_blob, AT, nT, opt);
return;
return conv3x3s1_winograd23_int8_avx512vnni(bottom_blob, top_blob, AT, nT, opt);
}
#endif

#if NCNN_RUNTIME_CPU && NCNN_AVXVNNI && __AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
if (ncnn::cpu_support_x86_avx_vnni())
{
conv3x3s1_winograd23_int8_avxvnni(bottom_blob, top_blob, AT, nT, opt);
return;
return conv3x3s1_winograd23_int8_avxvnni(bottom_blob, top_blob, AT, nT, opt);
}
#endif

#if NCNN_RUNTIME_CPU && NCNN_AVX2 && __AVX__ && !__AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
if (ncnn::cpu_support_x86_avx2())
{
conv3x3s1_winograd23_int8_avx2(bottom_blob, top_blob, AT, nT, opt);
return;
return conv3x3s1_winograd23_int8_avx2(bottom_blob, top_blob, AT, nT, opt);
}
#endif

#if NCNN_RUNTIME_CPU && NCNN_XOP && __SSE2__ && !__XOP__ && !__AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
if (ncnn::cpu_support_x86_xop())
{
conv3x3s1_winograd23_int8_xop(bottom_blob, top_blob, AT, nT, opt);
return;
return conv3x3s1_winograd23_int8_xop(bottom_blob, top_blob, AT, nT, opt);
}
#endif

Expand Down Expand Up @@ -4483,12 +4479,16 @@ static void conv3x3s1_winograd23_int8(const Mat& bottom_blob, Mat& top_blob, con
// NCNN_LOGE("TILE M/N/K = %d %d %d -> %d %d %d", M, N, K, TILE_M, TILE_N, TILE_K);

Mat BT(TILE_K * TILE_N, B, (K + TILE_K - 1) / TILE_K, (N + TILE_N - 1) / TILE_N, 2u, opt.workspace_allocator);
if (BT.empty())
return -100;

const int nn_NK = nn_N * nn_K;

if (nT > 1 && nn_NK < nT)
{
Mat B_tile(TILE_N * B * TILE_K, 2u, opt.workspace_allocator);
if (B_tile.empty())
return -100;

for (int ppjk = 0; ppjk < nn_NK; ppjk++)
{
Expand All @@ -4512,6 +4512,8 @@ static void conv3x3s1_winograd23_int8(const Mat& bottom_blob, Mat& top_blob, con
else
{
Mat B_tileX(TILE_N * B * TILE_K, 1, nT, 2u, opt.workspace_allocator);
if (B_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppjk = 0; ppjk < nn_NK; ppjk++)
Expand All @@ -4537,6 +4539,8 @@ static void conv3x3s1_winograd23_int8(const Mat& bottom_blob, Mat& top_blob, con
}

Mat top_tileX(TILE_N * B * TILE_M, 1, nT, 4u, opt.workspace_allocator);
if (top_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppj = 0; ppj < nn_M; ppj++)
Expand Down Expand Up @@ -4568,6 +4572,8 @@ static void conv3x3s1_winograd23_int8(const Mat& bottom_blob, Mat& top_blob, con
conv3x3s1_winograd23_transform_output_tile_int8(top_tile, top_blob, i, max_ii, j, max_jj);
}
}

return 0;
}

static inline void conv3x3s1_winograd43_transform_kernel_tile_int8(const Mat& kernel, Mat& A, int inch, int i, int max_ii, int k, int max_kk)
Expand Down Expand Up @@ -6250,37 +6256,33 @@ static inline void conv3x3s1_winograd43_transform_output_tile_int8(const Mat& to
}
}

static void conv3x3s1_winograd43_int8(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt)
static int conv3x3s1_winograd43_int8(const Mat& bottom_blob, Mat& top_blob, const Mat& AT, int nT, const Option& opt)
{
#if NCNN_RUNTIME_CPU && NCNN_AVX512VNNI && __AVX512F__ && !__AVX512VNNI__
if (ncnn::cpu_support_x86_avx512_vnni())
{
conv3x3s1_winograd43_int8_avx512vnni(bottom_blob, top_blob, AT, nT, opt);
return;
return conv3x3s1_winograd43_int8_avx512vnni(bottom_blob, top_blob, AT, nT, opt);
}
#endif

#if NCNN_RUNTIME_CPU && NCNN_AVXVNNI && __AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
if (ncnn::cpu_support_x86_avx_vnni())
{
conv3x3s1_winograd43_int8_avxvnni(bottom_blob, top_blob, AT, nT, opt);
return;
return conv3x3s1_winograd43_int8_avxvnni(bottom_blob, top_blob, AT, nT, opt);
}
#endif

#if NCNN_RUNTIME_CPU && NCNN_AVX2 && __AVX__ && !__AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
if (ncnn::cpu_support_x86_avx2())
{
conv3x3s1_winograd43_int8_avx2(bottom_blob, top_blob, AT, nT, opt);
return;
return conv3x3s1_winograd43_int8_avx2(bottom_blob, top_blob, AT, nT, opt);
}
#endif

#if NCNN_RUNTIME_CPU && NCNN_XOP && __SSE2__ && !__XOP__ && !__AVX2__ && !__AVXVNNI__ && !__AVX512VNNI__
if (ncnn::cpu_support_x86_xop())
{
conv3x3s1_winograd43_int8_xop(bottom_blob, top_blob, AT, nT, opt);
return;
return conv3x3s1_winograd43_int8_xop(bottom_blob, top_blob, AT, nT, opt);
}
#endif

Expand Down Expand Up @@ -6309,12 +6311,16 @@ static void conv3x3s1_winograd43_int8(const Mat& bottom_blob, Mat& top_blob, con
// NCNN_LOGE("TILE M/N/K = %d %d %d -> %d %d %d", M, N, K, TILE_M, TILE_N, TILE_K);

Mat BT(TILE_K * TILE_N, B, (K + TILE_K - 1) / TILE_K, (N + TILE_N - 1) / TILE_N, 4u, opt.workspace_allocator);
if (BT.empty())
return -100;

const int nn_NK = nn_N * nn_K;

if (nT > 1 && nn_NK < nT)
{
Mat B_tile(TILE_N * B * TILE_K, 4u, opt.workspace_allocator);
if (B_tile.empty())
return -100;

for (int ppjk = 0; ppjk < nn_NK; ppjk++)
{
Expand All @@ -6338,6 +6344,8 @@ static void conv3x3s1_winograd43_int8(const Mat& bottom_blob, Mat& top_blob, con
else
{
Mat B_tileX(TILE_N * B * TILE_K, 1, nT, 4u, opt.workspace_allocator);
if (B_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppjk = 0; ppjk < nn_NK; ppjk++)
Expand All @@ -6363,6 +6371,8 @@ static void conv3x3s1_winograd43_int8(const Mat& bottom_blob, Mat& top_blob, con
}

Mat top_tileX(TILE_N * B * TILE_M, 1, nT, 4u, opt.workspace_allocator);
if (top_tileX.empty())
return -100;

#pragma omp parallel for num_threads(nT)
for (int ppj = 0; ppj < nn_M; ppj++)
Expand Down Expand Up @@ -6394,4 +6404,6 @@ static void conv3x3s1_winograd43_int8(const Mat& bottom_blob, Mat& top_blob, con
conv3x3s1_winograd43_transform_output_tile_int8(top_tile, top_blob, i, max_ii, j, max_jj);
}
}

return 0;
}
Loading
Loading