Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Simplify is_bst.py #10627

Merged
merged 6 commits into from
Oct 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,8 @@
* [Flatten Binarytree To Linkedlist](data_structures/binary_tree/flatten_binarytree_to_linkedlist.py)
* [Floor And Ceiling](data_structures/binary_tree/floor_and_ceiling.py)
* [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py)
* [Is Bst](data_structures/binary_tree/is_bst.py)
* [Is Sorted](data_structures/binary_tree/is_sorted.py)
* [Is Sum Tree](data_structures/binary_tree/is_sum_tree.py)
* [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py)
* [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py)
* [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py)
Expand Down
131 changes: 0 additions & 131 deletions data_structures/binary_tree/is_bst.py

This file was deleted.

97 changes: 97 additions & 0 deletions data_structures/binary_tree/is_sorted.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
"""
Given the root of a binary tree, determine if it is a valid binary search tree (BST).

A valid binary search tree is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.

In effect, a binary tree is a valid BST if its nodes are sorted in ascending order.
leetcode: https://leetcode.com/problems/validate-binary-search-tree/

If n is the number of nodes in the tree then:
Runtime: O(n)
Space: O(1)
"""
from __future__ import annotations

from collections.abc import Iterator
from dataclasses import dataclass


@dataclass
class Node:
data: float
left: Node | None = None
right: Node | None = None

def __iter__(self) -> Iterator[float]:
"""
>>> root = Node(data=2.1)
>>> list(root)
[2.1]
>>> root.left=Node(data=2.0)
>>> list(root)
[2.0, 2.1]
>>> root.right=Node(data=2.2)
>>> list(root)
[2.0, 2.1, 2.2]
"""
if self.left:
yield from self.left
yield self.data
if self.right:
yield from self.right

@property
def is_sorted(self) -> bool:
"""
>>> Node(data='abc').is_sorted
True
>>> Node(data=2,
... left=Node(data=1.999),
... right=Node(data=3)).is_sorted
True
>>> Node(data=0,
... left=Node(data=0),
... right=Node(data=0)).is_sorted
True
>>> Node(data=0,
... left=Node(data=-11),
... right=Node(data=3)).is_sorted
True
>>> Node(data=5,
... left=Node(data=1),
... right=Node(data=4, left=Node(data=3))).is_sorted
False
>>> Node(data='a',
... left=Node(data=1),
... right=Node(data=4, left=Node(data=3))).is_sorted
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'str' and 'int'
>>> Node(data=2,
... left=Node([]),
... right=Node(data=4, left=Node(data=3))).is_sorted
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'int' and 'list'
"""
if self.left and (self.data < self.left.data or not self.left.is_sorted):
return False
if self.right and (self.data > self.right.data or not self.right.is_sorted):
return False
return True


if __name__ == "__main__":
import doctest

doctest.testmod()
tree = Node(data=2.1, left=Node(data=2.0), right=Node(data=2.2))
print(f"Tree {list(tree)} is sorted: {tree.is_sorted = }.")
assert tree.right
tree.right.data = 2.0
print(f"Tree {list(tree)} is sorted: {tree.is_sorted = }.")
tree.right.data = 2.1
print(f"Tree {list(tree)} is sorted: {tree.is_sorted = }.")